
SANDIA REPORT
SAND852345 UC-705
Unlimited Release
Printed September 1995

*

i
I

Sandia Software Guidelines

Volume 2
Documentation

prepared bv
,--- Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-94AL85000

Approved for public release; distribution is unlimited.

I SF29000(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Omce of Scientific and ‘khnical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Bchnical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A07
Microfiche copy: A01

D

SAND85-2345
Unlimited Release

Printed September 1995

Sandia Software Guidelines
Volume 2

Documentation

Sandia National Laboratories
Albuquerque, New Mexico 87185

Distribution
Category UC-705

Abstract

This volume is one in a series of Sandia Software Guidelines intended for use in
producing quality software within Sandia National Laboratories. In consonance
with the IEEE Standards for software documentation, this volume provides
guidance in the selection of an adequate document set for a software project and
example formats for many types of software documentation. A tutorial on life
cycle documentation is also provided. Extended document thematic outlines and
working examples of software documents are available on electronic media as an
extension of this volume.

Blank Page

Foreword

.

This volume is one in a series of Sandia Sofnvare Guidelines for use in producing quality software within
Sandia National Laboratories (SNL). These guidelines, when used in conjunction with IEEE standards and
current software engineering methodologies, will help ensure that software developed within SNL is
usable, reliable, understandable, maintainable, and portable. The series consists of the following
documents:

Volume I , Software Quality Planning (SAND85-2344)

Presents an overview of procedures designed to ensure software quality. Includes a sample
software quality assurance plan for a generic Sandia software project.

Volume 2, Documentation (SAND85-2345)

Presents guidance in the selection of adequate documentation for a software project. Includes
templates of documents needed for developing, maintaining, and defining software projects.

Volume 3, Standards, Practices, and Conventions (SAND85-2346)

Presents consensus standards and practices for developing and maintaining quality software at
SNL. Includes recommended deliverables for major phases of the software life cycle.

Volume 4, Configuration Management (SAND85-2347)

Presents a discussion of configuration management objectives and approaches throughout the
software life cycle for software projects at SNL.

Volume 5 , Tools, Techniques, and Methodologies (SAND85-2348)

Presents descriptions and a directory of software tools and methodologies available to SNL
personnel.

.

Acknowledgment

A consensus document, like this volume of the Sandia Software Guidelines, cannot be produced without
the cooperation and hard work of a great many people throughout the Laboratories. The sponsoring
Quality Engineering Department wishes to thank the members of the working group who contributed to
this volume, as well as members of the balloting group who reviewed and refined it.

Working Group Members

Marianna Eisenhour (02615)
Gregg Giesler (06521)
Pam Harris (09617)
Walt Huebner (09421)
Dwayne Knirk (12326)

Balloting Members

Paul Attermeier (09426)
Lorraine Baca (026 15)
Michael Blackledge (12326)
Drayton Boozer (12400)
Ann Chipman (05501)
Nancy Freshour (07901)

Gerald McDonald (12326)
Dave Peercy, Editor (12326)

(13316) Joe Schofield

Fred Trussell (1 2334)
Eric Tomlin (06613)

Ann Hodges (094 3 2)
Laney Kidd (02615)
Charleene Lennox (02172)
Paula McAllister (07901)

Patty Trellue (026 15)
Margaret Olson (02122)

The editor of this report also wishes to recognize this quote by John Aitken, a software manager and friend,
who helped a few of us recognize (perhaps inadvertently) a basic truth about documentation:

"Whenever there is a difference between source code and
documentation, always believe the code -- unless it's wrong."

Table of Contents

1 Introduction ... 1
1.1 Intent .. 1
1.2 Environment ... 2
1.3 Applicability ... 2
1.4 Organization ... 2
1.5 How to Use This Volume ... 3

2 Documentation Concepts ... 5
2.1 Overview of Software Life Cycle and Associated Documentation 5
2.2 Software Process Improvement .. 7

2.2.1 Software Process Capability Maturity Documentation .. 7
2.2.2 Documentation Process Maturity Model ... 10

2.3 Information Sharing Methods ... 11
2.3.1 Information Network ... 12
2.3.2 Continuous Acquisition and Life-Cycle Support .. 13
2.3.3 Automated Document Imaging System .. 14
2.3.4 Integrated Development Environment and Assistant .. 15

2.4 Formal Methods for Documentation of Software .. 16
3 Making Project Documentation Choices .. 17

3.1 What Document Set is Adequate for My Project? ... 17
3.2 How Can I Control the Document Version? .. 25

3.2.1 Configuration Control of Documentation .. 25
3.2.2 Examples .. 26

3.3 Are There Tools to Assist Documentation? ... 28
3.3.1 Documentation Tool Taxonomy ... 29

3.3.3 Graphics Processors ... 29
3.3.4 Integrated Tool Environments ... 31
3.3.5 What to Look For In Selectinflsing Tools ... 31

3.3.2 Word Processors and Desktop Publishers ... 29

3.3.6 How Can I Use the Templates In This Volume? ... 31
3.4 Documenting Existing Software ... 32

3.4.1 Documenting Requirements .. 32
3.4.2 Documenting Design Information ... 33
3.4.3 Documenting Test Cases and Results .. 34
3.4.4 Reverse Engineering Software Documentation .. 34
3.4.5 Some Potential Problems to Avoid .. 35

3.5 Are There Methods to Improve Documentation Quality? 37
3.5.1 Documentation Quality Characteristics ... 37
3.5.2 Documentation Review Methods ... 37
3.5.3 Documentation Inspection Process .. 31

4 Document Guidelines: Format and Content .. 39
4.1 Software Management Plan (SMP) ... 40

4.1.2 Template Outline ... 41

4.2.1 Description .. 42
4.2.2 Template Outline ... 43

4.1.1 Description .. 40

4.2 Software Development Plan (SDP) ... 42

...
111

--.1__11--
...-.-. . ~

4.3 Software Quality Assurance Plan (SQAP) ... 45
4.3.1 Description .. 45
4.3.2 Template Outline ... 46

4.4 Software Configuration Management Plan (SCMP) 48
4.4.1 Description .. 48
4.4.2 Template Outline ... 49

4.5 Software Requirements Specification (SRS) .. 51
4.5.1 Description .. 51
4.5.2 Template Outline ... 52

4.6 Software Design Description (SDD) ... 54
4.6.1 Description .. 54
4.6.2 Template Outline ... 55

4.7 Software System Test Plan (SSTP) ... 57
4.7.1 Description .. 57
4.7.2 Template Outline ... 58

4.8 Software Support/Maintenance Plan (SSMP) .. 59
4.8.1 Description .. 59
4.8.2 Template Outline ... 60

4.9 Software Safety/Security Plan (SSP) ... 61
4.9.1 Description .. 61
4.9.2 Template Outline ... 62

4.10 Software Users Guide (SUG) .. 64
4.10.1 Description .. 64
4.10.2 Template Outline ... 65

4.1 1 Software Verification and Validation Plan (SVVP) 66
4.1 1.1 Description .. 66
4.1 1.2 Template Outline ... 68

5 Software Implementation Documentation .. 69
5.1 Source Code Implementation Standards .. 69

5.1.1 Source File Documentation .. 69
5.1.2 Naming Conventions ... 70
5.1.3 Language Constructs ... 70
5.1.4 Style and Layout Guidelines .. 70
5.1.5 Maintenance of Coding Standards ... 70

5.2 Unit Development Documentation .. 70
5.2.1 Developing Unit Documentation of Known Quality ... 71
5.2.2 Unit Documentation for Developers ... 71
5.2.3 Unit Documentation for Testers ... 73

5.3 Software Development Folders ... 75
5.3.1 Programmer's SDF .. 77
5.3.2 Controlled SDF ... 77
5.3.3 Archived SDF ... 77

Appendix A: References and Bibliography ... A-1
Appendix B: Acronyms .. B-1

C . 1 Life Cycle Relationships of Key Documents ... C- 1
C.l. 1 Description of System Requirements Analysis Activities ... c -2
C.1.2 Description of Software Requirements Analysis .. C-2
C.1.3 Description of Software Design ... c-3

Appendix C: Tutorial on Life Cycle Documentation .. C-1

iv

__.__I- ...

..

.

.

.

C.1.4 Description of Coding and Unit Testing .. C-5

C.1.6 Description of Software System Testing .. C-5
C.1.7 Description of Software Maintenance .. C-6

C.2 Project Management Documentation .. C-6
C.2.1 Project Plans, Schedules, and Resource Requirements Documentation C-6
C.2.2 Project Costing and Resource Analysis Documentation ... c- 12

C.3 Process Documentation .. C- 14
C.3.1 Documenting Software Requirements Management and Analysis Activities C-14
C.3.2 Documenting Software Design Activities .. C-17
C.3.3 Documenting Software Unit Coding, Unit Codes and Unit Testing Activities C-17
C.3.4 Documenting Software Inspections and Walk Throughs .. C-20

C.4 Other Potential Product Documentation ... C-21
C.4.1 Traceability Documentation for Software and Interface Requirements C-21
C.4.2 Software User, Installation, and Maintenance Documents C-21

C.4.4 Firmware Support Manual .. C-25

C.1.5 Description of Software Integration and Testing ... (2-5

C.2.3 Software Measurement and Metric Documentation ... c-12

C.4.3 Software Version Description Document ... C-24

C.5 Supporting Documentation .. C-25
C.5.1 Technical Interchange Meeting Minutes ... C-25
C.5.2 Lessons Learned ... C-26
C.5.3 Briefing Documents .. C-26
C.5.4 Project Review Documents .. C-26

Appendix D: Document Set Selection for Example Projects D-1
D . 1 Project 1: WR Development ... D-2
D.2 Project 2: Non-WR Information System Development D-4
D.3 Project 3: Small Research Development .. D-6
D.4 Project 4: Support of Existing Simulation Code Software D-8
D.5 Project 5: Purchased Information System Software D- 11
D.6 Project 6: Customer Specific WFO - SEMATECH D-14
D.7 Project 7: Internally Developed for External Customer WFO - Ada D-16

Appendix E: Documentation Standards and Contacts E-1
E . 1 International Standards Related to Documentation E-2
E.2 IEEE Standards Related to Software Documentation E-2

E.2.1 IEEE Standard for Software Quality Assurance Plans [IEEE730] E-2
E.2.2 IEEE Standard for Software Configuration Management Plans [IEEE828] E-2
E.2.3 IEEE Standard for Software Test Documentation [IEEE829] E-2
E.2.4 IEEE Guide for Software Requirements Specifications [IEEE830] E-3
E.2.5 IEEE Standard for Software Verification and Validation Plans [IEEE1012] E-3
E.2.6 IEEE Recommended Practice for Software Design Descriptions [IEEE1016] E-3
E.2.7 IEEE Standard for Software Project Management Plans [IEEE1058] E-3
E.2.8 IEEE Standard for Software User Documentation [IEEE1063] E-3
E.2.9 IEEE Standard for Software Maintenance [IEEE1219] .. E-3
E.2.10 IEEE Standard for Software Safety Plans [IEEE1228] ... E-3

E.3 Department of Defense Software Documentation References E-3
E.3.1 Department of Defense Software Standards and Handbooks E-4
E.3.2 Department of Defense Data Item Descriptions for Software E-5

V

_I__ . . _ ~ - " I_x .._ ..11.-/_ ...- . ..

List of Figures

Figure 1.1 . Guide to Using the Software Documentation Volume ... 4
Figure 2.1 . Activities in the Standard Software Life Cycle .. 5
Figure 2.2 . Software Requirements Analysis Process Task Activities .. 6
Figure 2.3 . Software Products Associated With Activities and Processes in the Standard Software Life

Cycle .. 6
Figure 2.4 . Repeatable Level Software Process Documentation: Part 1 of 4 ... 8
Figure 2.4 . Defined Level Software Process Documentation: Part 2 of 4 ... 9
Figure 2-4 . Managed Level Software Process Documentation: Part 3 of 4 ... 9
Figure 2-4 . Optimized Level Software Process Documentation: Part 4 of 4 ... 10
Figure 2.5 . Summary of Documentation Process Maturity Model .. 11
Figure 2-6 . ATM-based Multi-Media Documentation System ... 13
Figure 2.7 . IDEA Information Management ... 15
Figure 3-1 . Document Set Selection Process ... 20
Figure 3.2 . Document Set Selection Risk Scoring Guidelines: Part 1 of 3 ... 21
Figure 3.2 . Document Set Selection Risk Scoring Guidelines: Part 2 of 3 ... 22

Figure 3.3 . Guidelines for Selecting a Document Set Based on Risk Score .. 24
Figure 3.4 . Documentation Tool Taxonomy .. 30

Figure 3.2 . Document Set Selection Risk Scoring Guidelines: Part 3 of 3 ... 23

Figure 5.1 . Framework for Test Software .. 74
Figure 5.2 . Software Development Folder Content .. 76

Activities .. C-1
Figure C-2 . Decomposition of Software Into Component Elements ... C-4
Figure C.3 . Sample Software Work Breakdown Structure: Part 1 of 5 .. (2-7
Figure C.3 . Sample Software Work Breakdown Structure: Part 2 of 5 .. C-8
Figure C.3 . Sample Software Work Breakdown Structure: Part 3 of 5 .. C-9
Figure C-3 . Sample Software Work Breakdown Structure: Part 4 of 5 .. C-10
Figure C.3 . Sample Software Work Breakdown Structure: Part 5 of 5 .. C-11
Figure C.4 . Core Measures Recommended for Initial Implementation .. C-12
Figure C.5 . Example Form for Allocation of Software Requirements .. C-16

Figure C.1 . Relationship of Key Software Product-Item Documents to Standard Software Life Cycle

List of Tables

Table 4- 1 . Software Management Plan ... 41
Table 4.2 . Software Development Plan ... 44
Table 4.3 . Software Quality Assurance Plan ... 47

Table 4.5 . Software Requirements Specification ... 53
Table 4-6 . Software Design Description .. 56
Table 4-7 . Software System Test Plan ... 58
Table 4.8 . Software Support/h4aintenance Plan .. 60
Table 4.9 . Software Safety Plan/Software Security Plan .. 63
Table 4.10 . Software Users Guide ... 65
Table 4-1 1 . Software Verification and Validation Plan ... 68

Table 4.4 . Software Configuration Management Plan .. 50

vi

...... -I__ I

1 Introduction
Software documentation is all the information that describes software processes and products. This volume
presents guidelines on the use and form of software documentation that should be helpful to many different
Sandia software projects. The full information on references' is contained in Appendix A.

Documentation is the time-dependent representation of software products as they evolve through life cycle
activities: concept exploration, requirements analysis, design, implementation, test, operation,
maintenance support, and retirement. Documentation is also the definition of those processes used to
manage, develop, use, and support software. Documentation may exist on a variety of physical media,
including hard copy paper and electronic media. Documentation may also exist in a variety of physical
formats, including textual, graphical, and other combinations of information language forms, such as data
bases and timing state relations. The software program (binary executable code and required data) is
typically excluded from documentation but is in fact the most important representation of the software.
The software program is sometimes denoted as the software [deliverable] product, and other supporting
information as the software product associated documentation. The processes to create documentation may
be manual or automated. Software is the broad umbrella under which the pieces of documentation and
executable program code are collected. This interpretation of software and documentation is somewhat
broader than definitions such as in the Institute of Electrical and Electronics Engineers (IEEE) Standard
Glossary of Software Engineering Terminology [IEEJ%lO]:

"Software : the computer programs, procedures, and possibly associated documentation
and data pertaining to the operation of a computer system."

"Documentatio n: any written or pictorial information describing, defining, specifying,
reporting, or certifying activities, requirements, procedures, or results.''

Within this volume documentation, documents, and document set will be differentiated as necessary.
Documentation is the total set of all information about software processes and products. When certain
software documentation is developed and organized in accordance with a predefined purpose and format
and is a reasonably complete product entity under some level of official configuration control, it will be
called a document. As with documentation in general, a document may be stored on a variety of media
and may be represented in a variety of formats, but is most often associated with textual and graphical
forms. Documents are more formal than just a written record and their intent is to capture the information
considered the most important for description of the software. A document set is a collection of software
documents that results from a software project. The documentation term will generally be used throughout
this volume unless specific documents or document sets are being referenced, or the context makes more
specific terminology useful.

1.1 Intent
This Sandia Software Guidelines volume provides guidance for selecting a software document set for a
project; includes discussions of the content and outlines of several key software documents; and presents
examples of software documentation to assist individuals and Sandia projects in the context of their
involvement with the acquisition, development, use, and support of software. These guidelines can be
flexibly tailored for use on most Sandia projects: small, large, research, jnformation systems, weapon-
related, energy and environment, and work for others.

References throughout this volume are identified by a descriptive group of characters enclosed in
brackets, such as [IEEE610] for IEEE Std 610.

1.2 Environment
The environment found throughout Sandia is one of innovation and change. Whether research or
production-oriented design and development, Sandia projects are forging new state-of-the-art frontiers.
Change and iteration are day-to-day parts of doing business. Software is a major part of this innovation
and change.

The principles and techniques necessary to transform software activities from a creative art to a science are
also in a state of rapid evolution. Since documents are intended to capture the important snapshots of the
software life cycle, evolutionary changes to the software activities dictate the need for documentation
methods that can be easily adapted to and coordinated with the changes to the software process activities.

Each Sandia project should document its software management, engineering, quality, operation, and
support activities while balancing other factors such as performance, cost, complexity, quality, schedule,
and customer expectations. The documentation appropriate for each project should be described in the
project plan or an applicable organization software management plan as required by Sandia Laboratory
Policy [SLP 101 11. This volume will provide Sandia line management organizations and functional
program organizations with the necessary insight to make informed project documentation choices (see
Chapter 3):

0

0

0

what documentation is appropriate for a project;
what documentation is appropriate for each software life cycle activity of a project;
why the selected documentation is important to the project;
how to control updates and changes to documentation during development and support;
what automated methods are available to support documentation - and their limitations;
how to improve project documentation quality.

1.3 Applicability
The material presented in this volume is intended to be applicable to software projects at Sandia. Most
projects at Sandia can be regarded as consisting of either weapon-related or non-weapon-related activities.
The former class of projects, termed War Reserve (WR), are undertaken in support of the design and
development of nuclear weapon systems. We will refer to the latter class of projects as non-WR.

Within these two primary classes, WR and non-WR, there may be large or small projects, real-time and
non real-time projects, projects that include commercial as well as internally developed software, research
projects, information system projects, and projects that require customer-specific document sets. Where
differences in documentation approach exist, examples are used to illustrate the differences as much as
possible.

This volume is a set of guidelines, not directives. Enforcement of an application of these guidelines should
be established at the organization level appropriate for the projects to which the guidelines are to be
applied. This document is to be used with the other volumes of the Sandia Software Guidelines, references
[SSGvl], [SSGV~], [SSGV~], and [SSGvS]. In addition, there are many other references such as the Sandia
Laboratories Policy on Software Management [SLPIOl 11, Sandia Preferred Processes for Software
Development [PPSD), and hocess Guidelines for Sandia WR Software Development IpGWR] that provide
further details on software engineering guidelines for Sandia National Laboratories. The reader is also
encouraged to consult the IEEE software engineering standards and guides [IEEEstds] for further
information since many of the document outlines/templates provided within are derived from the IEEE
standards.

1.4 Organization
This volume is divided into five chapters, five appendices, and continually evolving information on
electronic media such as documentation templates and examples in various word processing formats. The
chapters and appendices are bound in this physical volume.

2

Chapter 2 contains a description of some current and future software documentation concepts. An
overview of documentation relationships across the software life cycle activities is presented with a more
detailed tutorial included in Appendix C. Documentation of software processes and products as part of the
Software Engineering Institute's concept of software process improvement is discussed. The potential use
of information networks such as the National Information Infrastructure, World Wide Web, and the
Continuous Acquisition and Logistics Support are described along with applications within Sandia for
software documentation sharing at the corporate, organization, and project level.

Chapter 3 covers the practical aspects of making project documentation choices. A method for choosing
the appropriate documentation and tailoring the documentation to the project is discussed. Application of
the selection method to different example projects is illustrated in Appendix D. Choices for controlling the
configuration of software documentation throughout the life cycle (development and support) are
discussed. Tools to construct, update, and control software documentation are discussed along with some
of the problems. Options are presented for the documentation of existing software as part of reverse
engineering and re-engineering activities. And, characteristics of better quality documentation are
discussed along with some methods for building these characteristics into the documentation throughout
the software life cycle activities.

Chapter 4 contains descriptions of a core set of key software documents. The descriptions include an
outline for each key document and guidelines for tailoring and completing each outline. Documents are
provided for software management and engineering activities. The complete document template for each
outline is available on electronic media. For the most part, the document templates are similar to IEEE
standards and can be tailored to most organization-specific documentation requirements. IEEE,
Department of Defense (DoD), and International Standards Organization (ISO) standards related to
documentation are briefly described in Appendix E along with points of contact and current access
methods.

Chapter 5 provides specific focus on documenting software implementation at the unit level, in particular
the source code and test activities. Use of a Software Development Folder to capture implementation
documentation is described.

The appendices include a list of references: glossary of acronyms: tutorial on life cycle documentation
relationships: examples of project document set selections; and documentation standards and contacts.

In addition to this hard copy volume, the templates described in Chapter 4 and a number of document
examples (not always in a format identical to the associated template) are available on electronic media,
generally in the original word processor format. For additional information on how to access the latest
version of the electronic media, call the telephone listing for "Software Guidelines" under the services
section in the Sandia National Laboratories telephone directory. The electronic media will be regularly
updated to include revised and new templates, new examples of documentation, and other relevant
information on docurnentation.

1.5

A reader guide for locating information concerning various software documentation interests is
summarized in Figure 1-1.

How to Use This Volume

.

What’s in this

documentation
templates are
available?

Read First
Chapter 1: Introduction

Chapter 4: Document
Guidelines
- format & content
- electronic copy of
templates & examples

Chapter 3: Making
Documentation Choices
- section 3.1 selection

Chapter 3: Making
Documentation Choices
- section 3.2 control
- section 3.4 reengineer
- section 3.5 quality
Chapter 2:
Documentation Concepts
- software life cycle
- process improvement
- information sharing
- formal methods
Chapter 3: Making
Documentation Choices
- section 3.3 tools

Chapter 3: Making
Documentation Choices
- section 3.2 control
Appendix C: Tutorial on
Life Cycle Relationships
- documentation forms

Chapter 1: Introduction
- section 1.4 last

paragraph

What software
documentation is
appropriate for my
project?
What if my code is
already written --
how can existing
software be
documented?
What are some more
modem concepts for
documentation?

Read Second Read Third
Review Table of
Contents & Illustrations
Chapter 1: Introduction
- section 1.4 last

Pursue interesting topics

Appendix C: Tutorial on
Life Cycle Relationships

paragraph - documentation forms

Appendix D: Project Chapter 2:
Selection Examples Documentation Concept

- section 2.1 life cycle

Chapter 5: Appendix C: Tutorial on
Implementation Life Cycle Relationships
Documentation - documentation forms
- code & unit test
- development folder
Appendix C: Tutorial on
Life Cycle Relationships Documentation Standards
- documentation
- relationships - contacts
- guidelines

Chapter 4: Document Chapter 5:
Guidelines Implementation
- format & content Documentation
- example templates in
electronic form - development folder

Chapter 2: Sandia Software
Documentation Concept Guidelines: Volume 4
- section 2.1 life cycle
Chapter 3: Making
Project Documentation Set Selection for
Choices Example Projects
- section 3.1 selection
Sandia Telephone Sandia Telephone
Directory: Software Directory: Software
Guidelines Management Program

Appendix E:

- trends in standards

- code & unit test

Appendix D: Document

Are there
documentation tools
that might help?

How do you control
documentation
versions?
How does all this
documentation work
together over the
complete life cycle?
How does one obtain
an electronic media
copy of the document
templates and other
documentation
examples?

Figure 1-1. Guide to Using the Software Documentation Volume

4

2 Documentation Concepts
This chapter contains discussion of some traditionally important as well as more forward-looking
documentation concepts. A brief overview of software life cycle activities and traditional supporting
software product documentation is presented. Recent emphasis on software process improvement and the
documentation that provides evidence of process definition and capability maturity is discussed. A guide
to the Software Engineering Institute (SEI) Capability Maturity Model documentation is described along
with a framework for a documentation process maturity model. One near-term documentation thrust is to
provide methods for storing, handling, transporting, and displaying information (including software
documentation) across internal and external networks. Some of these information sharing concepts are
described. Some research concepts on formal methods for documenting software are also discussed.

, -

2.1
This section provides an overview of the relationship between software documents and the software life
cycle activities and processes that produce these documents. The top-level software life cycle activities
include those shown in Figure 2-1, organized for illustration purposes only into a Waterfall-like model,
where the phases correspond to each of the activities. In addition to these activities, a Concept Exploration
activity is usually conducted at the system level and may involve software activities.

Overview of Software Life Cycle and Associated Documentation

System
Requirements

Analysis

Software
’

Requirements
Analysis

Software
Design

Coding
and

Unit Testing

Software

Software
Maintenance

Figure 2-1. Activities in the Standard Software Life Cycle

For each top-level activity, a set of lower-level tasks are identified that may be performed sequentially, in
parallel, and/or iteratively. The Sandia Preferred Processes for Software Development [PPSD] provides a
top-level description of the process tasks to accomplish software requirement analysis, software design,
software coding and unit testing, and software integration testing activities. Each of these activities may
involve developmenthupport, metrics and measurement, reporting, reviews, approval, customer/user
coordination, and so forth -- with the appropriate associated documentation. For example, the software
requirements analysis process tasks are illustrated in Figure 2-2. A more detailed discussion is presented in
Appendix C.

Figure 2-2. Software Requirements Analysis Process Task Activities

Software Software
Requirements Software Coding and Unit Integration and

Analysis Design Testing Testing

A number of potential documents and reports that may be created during a development project or modified
during software maintenance activities are shown in Figure 2-3. Documentation associated with a software
project may include other elements in addition to the documents shown in Figure 2-3 and those identified in
the preceding paragraphs. Such elements may include memoranda, electronic mail, results of design
decisions and trade-off studies, minutes of technical interchange meetings, and so forth. The most
important of these elements are further described in Appendix C.

System Testing Software
support

system
Requiments

Analysis
Project

Management
Plan

Software Software Software Module Test Software
Requirements Design Development Cases System Test
Specification Description Folders Plan

Requiments Design Listings Results Descriptions
Interface Interface Source Code Module Test Software Test

Specification Document
Requirements Design Code Inspection Readiness , InspedionReports Inspection Reports Review Repott

system
Requirements
Specification

System Project
Schedule

Software Project
Schedule

-

Software
Support Plan

Software

Manual
Software

Users Guide

support

Software
Veritication

&
Validation

Plan

Reports
Preliminary Design Design Software Changes to

Review Reports Review System Test Product
Reports Results Baseline

Documents
Quality Assurance & Configuration Management CM Audit Reports

Figure 2-3. Software Products Associated With Activities and Processes in the Standard
Software Life Cycle

6

The organized manner in which software life cycle activities, the process definitions, and the associated
documentation components are integrated into project phases is the software life cycle model. This model
defines the overall processes that will be used by a project and the software products and documentation that
will be produced by the project. Documentation of software processes and integration of environments for
information sharing are becoming key to the effective development of project documentation across the life
cycle activities. For critical Sandia projects it may even be necessary to provide a more formal approach to
software development and documentation to satisfy safety and security requirements. These emerging
methods to support more effective software documentation are discussed in the next few subsections. Some
internal Sandia projects at the organization and corporate level are beginning to address and use some of
these methods.

2.2 Software Process Improvement
Software organizations can benefit from documentation management. As an organization begins to
understand its essential processes, these processes will be documented, perhaps in accordance with the
model of Key Process Areas such as promoted by the Software Engineering Institute (SEI). The SEI
Capability Maturity Model (CMM) [SEI-CMM] identifies various documentation across 18 Key Process
Areas and 5 levels of capability maturity. Documentation requirements of the SEI CMM Key Process
Areas are based on the following area characteristics:

goals;
0 commitment to perform in the form of actions taken to ensure that a defined process is established

and will endure:
ability to perform in the form of preconditions that will allow implementation of the process;
activities performed in the form of plans, roles, and procedures necessary to implement the key
process;
measurement and analysis in the form of measures and tracking the activity results relative to the
defined goals and process definition; and,
verification that the activities performed comply with the defined process.

The next subsections provide further guidance for software documentation related to the SEI CMM, the
associated Key Process Areas, and the characteristics specific to each Key Process Area.

2.2.1
The documentation associated with the 18 SEI CMM Key Process Areas across the five CMM Levels is
illustrated in Figure 2-4. Level 1 (Ad Hoc) is not represented since no defined processes and specific
documentation are generally identifiable. Details concerning content of the Key Process Area
documentation can be found in references [SEI-CMM] and [STSCdo].

Software Process Capability Maturity Documentation

Software Project Planning

Software Project Tracking
and Oversight

Software Subcontract
Management

Software Quality Assurance

Software Configuration
Management

Documentation
Allocated requirements review
Policy on managing allocated software requirements
Software development plan
Software estimates procedures
Project schedule
Software life cycle definition
Software planning data
Software project activities and commitments
Software engineering facilities and support tools pla
Revision of software development plan
Peer review plans
Change requests and problem reports procedure
Formal reviews at selected milestones
Pro.ject tracking and recording procedures
Statement of work
Software subcontractor selection procedure
Subcontractor software development plan
Subcontract management policy
Changes to subcontractor Statement of Work/Contract/Commitments
Formal review of subcontractor accomplishments at selected milestones
Monitoring of subcontractor CM/SQA activities procedure
Formal subcontractor evaluation procedures
Acceptance testing procedure for subcontractor's products
Software quality assurance plan
Policy for implementation of SQA
Deviations in software activities and software work products procedure
SQA participation procedure
SQA reports
SQA reviews procedure
SCM activities plan
SCM policy
Changes to baselines procedure
Software baseline library product creation and release control procedure
Configuration items/units status review procedure
Standard software configuration management reports
Baseline audits procedure

Figure 2-4. Repeatable Level Software Process Documentation: Part 1 of 4

8

Level 4 KPAs
Quantitative Process
Management

Software Quality
Management

Level 3 KPAs
Organization Process Focus

Documentation
Quantitative process management plan
Measurement and control of data procedure
Quantitative control of process procedure
Quantitative process management activities report
Process capability baseline procedure
Software quality plan
Quantitative quality goals document

Organization Process
Definition

Training Program

Integrated Software
Management

Software Product
Engineering

Intergroup Coordination

Peer Reviews

Documentation
Assessment finding action plan
Software development, improvement, & training coordination policy
Process database utilization policy
New technology evaluation/transfer procedure
Developing and maintaining standard software process and life cycle

Software process tailoring guidelines
Utilization of process databasebibrary policy
Development and revision of organization/project training plan
Training requirements
Development and maintenance of training courses
Training waiver
Training records
Tailoring of standard software process procedures
Software process revision procedure
Costs/dependencies/risks/resources management procedure
Methods and tools integration plan
Software requirements, design, code, documentation, testing defined and
integrated into software process

Resolution of intergroup issues procedure
Intergroup commitments communication plan
Critical dependencies tracking procedure
Technical review and interchange policy
Peer review plan
Peer review performance procedure

definitions procedure

Figure 2-4. Defined Level Software Process Documentation: Part 2 of 4

Figure 2-4. Managed Level Software Process Documentation: Part 3 of 4

Level 5 KPAs
Defect Prevention

Technology Change
Management

Process Change Management

2.2.2 Documentation Process Maturity Model
Experience has shown that examination of the software documentation produced by an organization can
provide an excellent indication of the software development capability maturity of that organization. A
Documentation Process Maturity Model (DPMM) is referenced in [DPMM] , and defines a framework for
assessing the maturity of an organization’s documentation processes. The DPMM has four levels
(corresponding approximately to the first four levels of the CMM) where the capabilities for each level are
defined in terms of the following:

keywords:
description of documentation:
key process area;
key practices:

0 key indicators; and,
0 key challenges.

The DPMM is summarized in Figure 2-5.

Docum entat ion
Defect prevention activities plan
Causal analysis meetings procedures
Defect prevention data
Defect prevention revisions to standard software process procedure
Defect prevention feedback and activities report
Technology change management plan
New technologies report
Technologies selection and acquisition procedure
Application of new technologies to standard software process procedure
Total Quality Management program
Process improvement plan
Process improvement procedures
Process improvement record
Process improvement training plan

10

Level 2

Standards check-
off list,
inconsistency

Level 3
Defined

Product assessment,
process definition

Documentation
recognized as important
and must be done well

Documentation on
quality assessment:
documentation
usefulness assurance:
process definition
SQA-like teams for
documentation quality
and usefulness:
consistent use of
documentation tools

SQA-like practices;
consistent use of
documentation tools
Establish process
measurement:
incorporate control over
process

Description

Level 4
Controlled

Process assessment,
measurement, control,
feedback,
improvement
Documentation
recognized as
important and must be
done well consistently
Provide quality
assessment and
measures

Minimum process
measures; data
collection and
analysis; extensive use
of documentation tools
and integration with
CASE tools
Data analysis and
improvement
mechanisms
Automate data
collection and
analysis; continue to
strive for optimization

Documentation Documentation
not a high recognized as t priority important and

Key Process 1
Areas

Ad hoc, process I Inconsistent

Key
Practices

not important

Documentation
not used

application of
standards

Check-off list has
variable content

Key
Indicators

Key
Challenges

Documentation
missing or
outdated
Establish
documentation
standards

I

Standards
established

Exercise quality
control over
content: assess
documentation
usefulness: specify r rocess I

Figure 2-5. Summary of Documentation Process Maturity Model

2.3 Information Sharing Methods
As information sharing across communication boundaries is made more feasible by better defined
processes and new technologies, the methods for development, review, delivery, use, and support of
software documentation will likely be revolutionized. Because of the viability of high-speed access, the
on-line inclusion of documentation with the operational software product will be realized for most systems.
The electronic capability will soon exist to share current documentation on design, update the
documentation based on electronic conferencing decisions, and maintain on-line the configuration
managed view of all related (linked) documentation. Documents and document sets will be logically
linked pieces of information stored on electronic media.

In order to create an algorithmic definition of the electronic links and documentation relations,
documentation is being mathematically defined by its unique object sets and associated operations and
relations. Processes that develop or use documentation are being standardized for application across
project, organization, corporate, national, and international communication boundaries. Tool sets are being
developed as an integrated part of these processes to facilitate documentation development, use, and
communication. The following subsections provide an overview of some of the potential information
sharing methods that should lead lo new software documentation form, content, and use. Although the

11

future evolution may be somewhat different than described herein, the key is that process improvement and
technology change are likely to significantly alter the form and use of system, software, hardware, and all
forms of documentation in the future.

2.3.1 Information Network
The international network is typically referred to as the Internet. This is a complicated collection of
computer systems, communication protocols, and physical communication lines that began to take shape in
the 1970s. Today, there are many different aspects to the Internet, but one key trend is the increase in the
number of users (individuals, groups, companies) that are able to communicate basic electronic
infomation.

With some effort it is possible to share specific documents such as those prepared by standard desk-top
publishing software like word processors, graphics packages, and spreadsheets. Corporate groups that are
physically separated can share project and product documentation. In an effort to make the location of
information more transparent and multimedia information access more seamless, there have been some
recent interesting developments that will be important for software documentation. One of these concepts
is the Asynchronous Transfer Mode (ATM) network.

In short, the ATM network has an open architecture that will allow increased flexibility and efficiency in
tomorrow’s high-speed, multi-service, multimedia networks. The current telephone, television, Internet,
and other communication networking will be integrated into a logical network concept that digitally
connects all of these voice, video, and data services. Multimedia software documentation (hypermedia)
may exist in physically distinct parts of the network, linked through a set of access points embedded within
each docurnentation part called a hyperlink. The owner of a document can specify the access privilege and
provide hyperlink access on a network page to document objects that are to be made visible to other
potential viewers. A project might create a network page to provide access to project, process, and product
documentation. An organization might create a network page that would be available to other
organizations as well as projects within the organization. A corporation might create one or more network
pages for sharing of corporate level information with external customers and internal organizations. The
effect is a relational communication linkage scheme.

The World-Wide Web (WWW) is a term being applied to one of the current protocols for accessing and
viewing Internet information, employing windows-based browsers with user-friendly click and go
interfaces. On the WWW, home pages are created by the host organization as a top-level screen display
with links to lower level pages containing information the host wishes to present. Sandia is in the process
of creating a Sandia Internal Web for use by organizations and projects within Sandia and an access
interface to the external WWW for linkage with other corporations around the world. Sharing voice,
video, and data as documentation of software product within an information network infrastructure is
within process and technology reality. This technology most certainly will alter the software acquisition,
development, use, and support paradigm with regard to documentation of software processes and products.
The merging of video, graphic, and text docurnentation is illustrated in Figure 2-6.

12

.- -

-
ATM

Interface
Card

x

Server ADDlication
Utilities

Transport
Protocol

ATM Signaling

nt

[
I- Control -,

Presentation

El Video

- - . - -

[L]

I I I I

Server A DDI ica ti on

.:.:.:.:.:.:.

.
'rotocol

ATM Signaling
Data

interrace
Card I

Storage

Figure 2-6. ATM-based Multi-Media Documentation System

2.3.2 Continuous Acquisition and Life-Cycle Support
Continuous Acquisition and Life-Cycle Support (CALS) was established by the Department of Defense in
1985 and is a DoDflndustry strategy for the transition to automated interchange of technical data and to the
process improvements enabled by automation and integration. CALS will facilitate business integration
and promote an electronic commerce environment that will enhance industrial competitiveness and
economic growth through process improvement, information technology, and international product data
exchange standards. CALS is applicable for all forms of product documentation, including software.

The CALS Software Product Committee has developed a plan to apply CALS strategy to the development,
delivery, and maintenance of software products developed under DOD-STD-2167A [DOD2167A] and its
successor MIL-STD-498 [MIL498]. Many military standards are gradually being replaced by equivalent
commercial standards, as is currently the case with MIL-STD-498. These standards and their
accompanying documentation concepts will influence Sandia software organizations. The benefits of
CALS to the software life cycle process are to reduce the total cost and time attributed to documentation,

and more importantly, to improve access to the information contained in the documents. The reader can
contact the Software Technology Support Center [STSC] for the most recent information on CALS and the
following supporting standards:

Delivery MedidFormatlOrganization: these standards address the magnetic tape, CD-ROM,
telecommunications, and other applicable media standards for formatting and organizing header file and
data file types.

Initial Graphics Exchange Specification (ICES): this standard includes three dimensional technical
illustrations and engineering drawings.

Standard Generalized Markup Language (SGML): this standard is for the identification of textual
(unfielded) data and defines the following:

e

0

tags - embedded information specifying processing details of sections including references to
raster and vector illustrations;
document type definition - specifies the organization, structure and content of the document and
the meaning of the tags;
formatting output specification instance - specifies document format and style; and
page description language - specifies how the page is produced (e.g., PostScript).

Requirements for Raster Graphics Representation in Binary Format: this standard includes Type I
(untiled) and Type I1 (tiled), and is simply the format for a facsimile. Tiled refers to the logical cutting of
a raster image into rectangular sections, an approach used for more efficient handling of images larger than
the normal 8.5" x 11" page.

Computer Graphics Metafile (CGM): this standard includes two-dimensional technical illustrations and
graphic art.

HypermedidTime-Based Structuring Language: this standard describes a language and syntax for
representing objects, including hypermedia, in documents. Standardized linking, alignment, and
addressing methods allows objects to be made available in a standardized way.

STEP International Standard for the Exchange of Product Data: This standard is an evolving
technology progressing through new development and enhancements. There are many parts to the
standard, some of which are standards while others are in development. STEP can be viewed as an overall
umbrella standard for most of Ihe above standards whose implementation will be through integrated tool
kits based on standard Computer-Aided Drawing

2.3.3 Automated Document Imaging System
Systems are available that allow a completed document to be scanned into an automated document imaging
storage and retrieval system. These systems may also permit the storage and retrieval of electronically
generated information. If a particular document type has been scanned into such a system, it might be
possible to retrieve the document and use text editing tools to create a new document. This use of an
imaging system might save significant time if there are similarities in the different software projects or
similarities in the types of applications.

There are two basic types of document imaging systems: (1) those that allow the user to input information
about a document and store the information in an accessible database, with the document bit image only
being scanned and stored; and (2) those that allow the entire document to be scanned and stored in an
electronic manner such that text retrievals, searches, and editing can be performed. Because the first type
is usually significantly cheaper and quicker than the second type, some hybrid systems have been
developed which allow you to select either method for document storage and retrieval.

Sandia's Technical Library is currently in the process of establishing a document imaging system into
which many of Sandia's technical reports and documents will be scanned and made available to Sandia
employees. Part of the advantage of this system may be the ability to look for key words, either in the
document title, in a database of keywords established at the time the document was scanned, or in the

14

actual documents themselves. If the keyword search is successful, then the user may be able to download
the document (given the proper access authority) to their computer or some other transferable electronic
medium. Depending on the type of scanning system implemented by the Technical Library, it may also be
possible to scan a paper document and have the document converted to the word processor or other
application format appropriate for the users.

2.3.4 Integrated Development Environment and Assistant
Sandia is developing a system to provide easy and guided access to electronically accessible knowledge,
information, and tools in an integrated development environment. This system is called Integrated
Development Environment and Assistant (IDEA) and may be a valuable resource for sharing software
documentation developed using various tools.

Currently, IDEA provides an electronic facility for access both to general Internet resources and to much of
Sandia's unclassified information: project files, lessons learned, administrative and technical processes,
corporate documentation (e.g., standards, policies, processes), and product line resources. For example,
IDEA lets the user view and navigate archived project files (e.g., schematics) developed in a particular tool
even if the user doesn't own a copy of that tool. IDEA also offers an assistant to guide the user to those
resources that are relevant to the user's needs. The basic structure of IDEA is illustrated in Figure 2-7.

User
Workstation

User
Workstation

(PC,Mnc,UNIX)

IDEA

nforrnation & Knowledge
- Process, Product, Enterprise
- Project Information

- View, Navigate, Execute
- Information & Knowledge

Relevant Inforrnation,Tools

h e t w a k
gor Modem

Figure 2-7. IDEA Information Management

When fully developed, IDEA will provide a complete integrated development environment with a smart
assistant. Integration of tools, information, and expertise will make IDEA more than the sum of its parts.
For example, IDEA won't just instruct a user to author a software requirements document but will be able
to bring up the word processor of choice with a template that will aid the user in developing the document.

Users may connect to IDEA via network or modem from most PC, Macintosh, or UNIX workstation
platforms. From IDEA, users may access resources originally developed on PC, Macintosh, and UNIX
workstation platforms. The Technology Information Environment for Industry (TIE-In) will provide a
front end to IDEA allowing both external (United States Industry) and internal (Sandia) access to IDEA.

15

2.4 Formal Methods for Documentation of Software
Many software developers have found that current documentation standards are not as useful as desired. A
common complaint is that current narrative documentation in natural language is not as easy for software
engineers and programmers to read and understand as the source code language version of the final code.
AE a result, a number of concepts have been explored as potential approaches to more formal mathematical
reoresentation of documentation. One such highly mathematical approach is described in detail in
[FARNAS]. The following paragraphs provide an overview of these formal documentation concepts.

Design Through Documentation: The approach accepts the premise that documentation of a computer
system must include a Systems Requirements Document that consists of both systems requirements and
system design. Such a document is considered to be a description of the system as a whole, in the form of
3 description of the hardware structure and a black-box description of the software. From that point,
particularly for large systems, the software development is split into several smaller work assignments.
The goal for each assignment is to design and implement a group of programs that, collectively, are called
:i module. Programs in such a module share access to a data structure and implement one or more abstract
objects. The documentation proposed for this approach consists of the following:

Software Module Guide - for the overall software system: describes the structure of the software
system by indicating the design decisions hidden within each module;
Module Interface Specification - for each module: provides a black-box description of the
behavior of objects created by that module; and
Module Internal Design - for every implementation of a module interface specification;
describes the internal data structures and the effect of the module's access-programs on the state of
the structure.

Design and Review Responsibilities: The approach follows the premise that the reviewer or maintainer of
a program should never have to guess at its structure. Designers systematically record information that
reviewers and maintainers would otherwise have to discover for themselves. Programs should be presented
to reviewers and maintainers as a collection of small parts, each with a precise description of its function.
This method will allow a review of each small part separately, with the understanding that, if each
component is correct, the whole program is correct. Reviewers must check both the structure and each
small fragment against the description of its function. To facilitate the review and maintenance effort,
designs are formally documented using mathematics.

Display Method of Documentation: The Display Method for mathematical documentation of programs
requires designers and implementers to present their programs through the use of tables to describe
mathematical functions, relations, and sets in the form of displays. The method is based on an
understanding that a well-structured program can always be written as a short text in which the names of
other programs may appear, and the programs named may also be short programs. Many short programs
will be the result, and in order to understand one program it will be necessary to understand a number of
other programs. The display method overcomes this problem by presenting a program description in such a
way that the program's correctness can be examined without looking at other displays.

0

0

16

3 Making Project Documentation Choices
This chapter provides guidance on requirements for the structure and information content of a minimum
document set based upon project characteristics and constraints. Using this guidance, the reader should be
able to make some intelligent choices on the cost and benefits of selecting, tailoring, constructing,
controlling, and improving the quality of a software project's document set.

The document set that the project develops may consist of one or more documents, depending on the size
of the project and the needs of the intended user. Each document of a document set may be one or more
volumes depending on the amount of information to be presented. The media form of the documents will
depend on the intended use of the documents and the technology available for representing the
documentation information (see Chapter 2 for some more advanced documentation concepts).

To determine appropriate project documents, the software product, its application, and the audience that
will use the product must be identified. A document set should contain the information needed by the
intended user. Depending on the nature of the software, the document set may need to be integrated with
system-level documentation. The presentation style and level of detail should be tailored for the intended
audience. When a document set must be prepared for audiences with widely differing needs, then the
materials should be appropriately separated to meet the specific needs of each audience. For example,
installation procedures may be required for field personnel who have many duties besides installing
software. The documentation in this case should specifically address the skill and background of the
installers and be written in clear step by step procedural language. Software operating guidelines will be
written in a style more oriented to simple computer operating input and output information and less
software engineering terminology. Software maintenance documentation may assume the user will possess
more software engineering skills and address the documentation style in an engineering language.

Documentation Suggestion # 1
Negotiate with the customer to deliver the minimal sufficient document set. -

3.1 What Document Set is Adequate for My Project?

Documentation Suggestion # 0
Keep it simple: a small amount of very useful documentation is preferred.

This section provides a step-by-step process for making selection choices for a project's document set.
Several examples of applying the process to some Sandia-like projects is presented in Appendix D. Every
software project is unique but there are characteristics of each software project that are in common with
other historical software projects. Experience with these historical projects provides guidance for the level
and type of documentation that would be most appropriate for your software project. The types of
documents and rigor of documentation content are a function of many factors: project budget, schedule,
complexity of software, quality constraints, performance requirements, and customer needs and specified
requirements. The function of documentation is to capture snapshots of information, perhaps in various
media forms (electronic and paper), about the operational software products and the processes and
intermediate products upon which the operational products are dependent. The precise document set that is
adequate for your software project will clearly depend upon the process that is followed for your project.

The documentation that is adequate for your project can generally be determined by asking the following
questions:

Question 1: What documentation is contractually required by my customer(s)?

17

customer, then documentation requirements are usually based upon DoD standards such as MIL-STD-498
(recent replacement for MIL-STD-2167A). Documentation deliverables are specified in terms of Data
Item Descriptions (DIDs) that identify documentation formats, section thematics, and any tailoring
requirements for the sections within. The documentation formats and thematics are similar to what is
presented in Chapter 4 but may differ in name and/or scope. If the Department of Energy is the customer,
then DOE Orders and Sandia-related procedures such as the Engineering Procedures (see references
[EP401040] and [EP401045]) may be applicable. If a commercial industry is the customer, then customer-
specific standards may apply, including the customer's internal standards and national professional
standards such as published by IEEE or other such organizations. If possible, it is best to work with the
customer and negotiate what documentation is most appropriate for development on the software project,
including documentation that will be internally used as well as delivered to the customer. This negotiated
document set is then the contractual basis for the project. Once the contractually required documentation is
identified, the next step is to make sure adequate descriptions exist of the document format and content. It
is also necessary to ensure that the software processes to be used have activities in place to develop new
and update existing documents in accordance with the contractual requirements.

Documentation Suggestion # 3
Use Chapter 4 guidelines for format & content of documentation when the

customer has no preferences.
b'

Question 2: What documentation is required by Sandia?

Documentation Suggestion # 2
Use a Software Management Plan to specify your documentation approach.

Sandia Laboratories Policy 101 1 [SLPIOI 11 requires all software to be managed through definition of a
Software Management Plan. Each organization should be covered by at least one such Plan that is tailored
to the type of software being managed by the organization. The Plan should indicate what software models
for acquisition, use, development, and support are to be followed by the organization. These models will
in turn reference appropriate customer and Sandia-specific requirements for documentation. Again, the
documentation format and content required by any specific organization standards may be similar to what
is discussed in Chapter 4.

Sandia has several general purpose documents that provide software development and support life cycle
model and process guidance:

0 Software Development/Support Methodology [SDSM]

Sandia Software Guidelines, Volumes 1 through 5 [SSG]
Preferred Processes for Software Development [PPSD]
Process Guidelines for Sandia WR Software Development [PGWR]
Engineering Procedure, Definition of Computer Software Configuration Items [EP401045]

Question 3: If there are no contractual requirements, what documentation does the
customer require?

I '

_-

e manarre~.; what documentation do I need to understand the nature of the project, including
progress, risks, and decision making aids?

The types of customers that the software needs to serve will determine any additional documentation
requirements beyond contractual and Sandia corporate requirements.

Question 4: What documentation does the project require?

Documentation Suggestion ## 4
Develop documentation as if you were the user, supporter, and manager.

Once you have satisfied the requirements of your customers and Sandia good software engineering
practices, the most critical group to satisfy is your own project group. If your project group can view the
software project as if they were the customer, the documentation needs will be much clearer. Your project
group should view itself as the customer in terms of using the software, supporting the software, and
understanding the conduct of the project from the viewpoint of the end customer. What would you need to
know and in what form would you need it in order to perform your function as a customer?

Documentation Selection Process

The next few figures provide a step-by-step description of a documentation selection process that can be
applied by each software project group, whether the group is one person or a large multi-functional
organization. The general documentation selection process is described in Figure 3-1. Risk scoring
guidelines are described in Figure 3-2 and guidelines for selecting a document set based on the computed
risk score are described in Figure 3-3. Although the factors identified in Figure 3-2 should apply to all
software projects, individual organizations may wish to tailor the factors and assigned risk values to the
organization’s own historical data. The selection process, risk factors, and associated risk scores are
discussed in more detail in Appendix D where a variety of examples are provided.

The time and effort to perform the documentation selection process will depend upon the size of the
software project, available dollars and personnel to perform the selection process, customer and contract
requirements, schedule, and other project specific factors. A reasonable effort to perform the selection
procedure outlined in Figure 3-1 for a small size and low cost project is about one to three person days. A
very large size and high cost project may require two or three person weeks. These should be the extremes,
with projects in intermediate categories requiring varying degrees of resources within these ranges. If you
are tempted to skip this selection process, then you should be prepared to pay the costs for either
inadequate or excessive software project documentation.

~ . Objective: Determine appropriate software documentation for a software project.

:. Abstract: This process enables the Project Manager, Leaders and Software Personnel to
juickly determine a minimal set of documentation for development/update by the software project.
'he process steps can be used by any type of project. This process should occur sometime
etween the initial discussion of the project with the customer and the development of a project
ilan by the project manager. A recommended document set is derived using a practical software
locumentation risk scoring guidelines. Further analysis and tailoring can be done by project
crsonnel to make sure the selected documentation is satisfactory. This process can be reentered
ny time the basis for the document set selection changes during the project.

I. Special Responsibilities:
Project Manager: Establishes working group. May be part of working group.
Project LeadersKey Project Software Personnel: May be chair or member of working group.
Selection Working Group: 1 to 4 key software project personnel.

1. Inputs: Customer(s) and Customer(s) Requirements, Type of Project (WR, non-WR), Project
lescription, Project Tasks, Software-Based Tasks, Possible Life Cycle Model, Existing
locumentation (department, project, customer); Document Templates and Documentation
hidelines (e.g., this volume). Not all inputs may be available or complete depending upon when
he negotiation for the document set selection is initiated.

i. Entry Criteria: Resources available for selection process; preliminary project and software
unction descriptions available: preliminary customer and project requirements specified to
ippropriate level of detail.

Procedure:
Step 1: Project manager forms documentation specification working group.
Step 2: Working group reviews inputs.
Step 3: Working group determines software risk levels for size, budget, schedule, customer

needs, project lifetime, expected customer growth, usage growth, support &
maintenance, personnel skills. Working group identifies previous similar projects.

Step 4: Working group completes risk range scoring from guidelines and any other analysis.
Step 5: Working group selects minimal document set based on risk level.
Step 6: Working group reviews guidelines for format of documents in the selected set and

Step 7: Working group establishes consensus on tailoringJexpansion of minimal selection set

Step 8: Project manager signs off on document set and includes set in project plan.

finalizes format.

based on risk range.

Exit Criteria: Document set is selected: risk range change scenarios have been analyzed:
;election decision criteria have been documented in project notebook.

$.
Scenarios; Any Risk Range Migration Plan

Output: Selection Decision Criteria; Software Document Set Selections; Risk Range Change

#. Copies of decision criteria used for documentation selection and the final
;oftware documentation selection decision for the project should be maintained in a projeci

Auditability:

*

Figure 3-1. Document Set Selection Process

20

I. Process:
10 - acquisition: purchase of SfW for use as part of project

100 - development: S/W developed to be used in system application

10 - use: operation/installation of S/W for use in system application

50 - support: SfW modified for use in existing system application

documentation - use vendor documentation (operation guide, user's guide)

documentation - developer, supporter, user

documentation - installation, user support

documentation - updates to existing documentation, development of new
supporter and user documentation

1. Size OyCSLOC):
10 - low (clO00): documentation set can vary from Source and Load

50 - medium (1000-19,999): documentation set can vary from Source and Load

100 - high (20,000-100,000): documentation set can vary from SDP, SQAF', SRS, SDD,

200 - xhigh (>100,000): documentation set can vary from SDP, SQAP, SRS, SDD, SSTP,

to SDP, SRS, SSTP, Source, Load

to SDP, SRS, SDD, SSTP, Source, Load

SSTP, Source, Load, SSMP to Extended Set

Source, Load, SSMP to Extended Set

3. Cost: (Life Cycle Cost to Sandia and its customers - don't include commercial vendor
development cost, do include any vendor support cost passed on to SNL).
10 - low: life cycle cost for S/W is estimated to be below $25,000
50 - medium life cycle cost for S/W is estimated to be between $25,000 and $50,000

100 - high life cycle cost for S/W is estimated to be between $50,000 and $100,000
200 - xhigh life cycle cost for S/W is estimated to be between $100,000 and $1,000,000
500 - xxhigh life cycle cost for S/W is estimated to be over $1,000,000

Caveat: This selection risk matrix should be tailored to an organization's historical data wher
available.

Acronyms Used Above:
NCSLOC
S/W Software
SDD Software Design Description
SDP Software Development Plan
S Q A P Software Quality Assurance Plan
SRS Software Requirements Specification
SSMP Software Support/Maintenance Plan
SSTP Software Svstem Test Plan

Non-Commented Source Lines Of Code

Figure 3-2. Document Set Selection Risk Scoring Guidelines: Part 1 of 3

1. Customer Characteristics:
The following characteristics are somewhat overlapping, so it is more difficult to provide
generic guidelines on how documentation could be allocated. Some guidance includes:

10 - no customer: S / W is acquired, developed, supported, used solely by a single person or
small group with no intentions of using the software or results from the software
execution for external or other Sandia internal customers. Documentation requirements
should be set by the single person or small group based on their own internal
consideration.

SO - internal Sandia customer: normal documentation guidelines follow from other risk
areas depending on how the customer intends to use the S / W . There should be a Sandia
review procedure for release of S / W to internal or external customers, and this release
procedure might require different levels of documentation consistent with this volume’s
guidelines. Count 50 points plus the following depending upon the project:

100 - WR project
10 - Non-WRproject
10 - Research
100 - Non-research

100 - external Sandia customer: must assume the external customer intends to use the S/W
Count 100 points plus the for operational use and perhaps critical decision making.

following additional points depending upon the project:
100 - WR project
10 - Non-WRproject
100 - Work For Others
10 - Non-WFO
10 - Research
100 - Non-research

5. Life Cycle Characteristics:
Prototype Activitiesb’roduction Product Activities

10 - Prototype
100 - Production

Expected Life Cycle Length
10 - Short (less than 1 year)
50 - Medium (from 1 to S years)

100 - Long (greater than S years)
Activities of Concern
(Cumulatively add the scores depending on the activities to be performed)

10 - Concept Definition/Requirements Analysis
50 - Design
20 - Implementation
30 - SystemTest
20 - Installation/operation
40 - Support

Acronyms Used Above:
S/W Software
WFO Work for Others
WR War Reserve

I

Figure 3-2. Document Set Selection Risk Scoring Guidelines: Part 2 of 3

22

P

5. Support Environment Characteristics:
Platform (planned or selected)

10 - Personal computer workstation
50 - Network workstation

100 - Mainframe

100 - Basic set
Automated Tool Support (planned or selected)

50 - Intermediate set - some Computer-Aided Software Engineering
10 - Integrated Computer-Aided Software Engineering

Personnel experience with the selected or planned support environment
50 - Inexperienced
20 - Mediumexperience
10 - Experienced

7. Historical Project Experience Characteristics:
Experience Level

50 - Low: none or very few similar projects
20 - Medium: several similar projects
10 - High: extensive experience

Personnel Stability
50 - Low: significant personnel changeover is expected
20 - Medium: moderate personnel changes are expected

10 - High: no personnel changes are expected, particularly for key personnel
(no greater or less than reasonable)

8. Sandia Customer and Political Risk characteristics:
Operational Reliability and Safety

10 - Low risk to human life, property, and/or political catastrophe
100 - Medium risk to human life, property, and/or political catastrophe
500 - High risk to human life, property, and/or political catastrophe

lo00 - Extra high (catastrophic) risk of great magnitude
(thousands killed, billions($) damage, and/or political chaos)

Customer Satisfaction
10 - Low risk to project success if customer is not satisfied with software

100 - Medium risk to project success if customer is not satisfied with software
200 - High risk to project success if customer is not satisfied with software

9. Other Possible Questions
- Is it possible the software risk level might change in the future?
- What are the major impacts on documentation if the risk level does change?
- How would the software be reengineered to satisfy new requirements of the new risk

level? Can the impact of future reengineering be affected during the current project?
- Identify the most lkely risk level change scenario within the next 5 years - what

documentation would be required to support the risk level change? Should that
additional documentation be part of the current documentation selection set?

Figure 3-2. Document Set Selection Risk Scoring Guidelines: Part 3 of 3

23

1. Document Sets:
Minimal Document Set: CODE, SDF
Basic Document Set:
Small Document Set:
Medium Document Set:
Large Document Set:

Complete Document Set:

SRS, CODE, SSTP, SDF
SDP, SRS, CODE, SSTP, SDF
SDP, SRS, SDD, CODE, SSTP, SSMP, SDF
SDP, SQAP, SCMP, SRS, SDD, CODE, SSTP, SSMP,
S W , SDF
S M P , SDP, SQAP, SCMP, SRS, SDD, CODE (source,
object, load, command language), SSTP, SSMP, S W P ,
SDF, SUG, SSP, Vendor User Documentation, and

Contract Documentation

1. Map of Risk Score to Document Set:
L o w Risk Range c 500:
Low Risk Range 500 to 999:
Medium Risk Range 999 to 1499:
High Risk Range 1500 to 1999:
xHigh Risk Range > = 2000:

Select Minimal Document Set
Select Basic Document Set
Select Small Document Set
Select Medium Document Set
Select Large Document Set

3. Some Additional Guidelines: If the project statement of work from the customer includes
documentation requirements then map the contractual documentation to these guidelines
determine which documentation is either included or not included per these volume 2 guidelines
identify the risks to the customer of either having too much or too little documentation, anc
establish final customer documentation requirements. Use MIL-STD-498 documents mapped tc
volume 2 documents if the customer is a Department of Defense agency. Include any othei
major Sandia customer document sets appropriately mapped to the volume 2 documents.

- If security is a major issue: add SSP.
- If a user interface is a critical issue: add SUG.
- If there are special installation and/or support characteristics, add SSMP.
- If operational reliability or customer satisfaction is critical, add SVVP.
- If S/W is being purchased, add Vendor User Documentation.
- If the organization is not covered by a software management plan per SLPlOl1, add SMP.
- This selection risk matrix should be tailored to an organization's historical data if possible.

Acronyms Used Above:
SCMP Software Configuration Management Plan
SDD Software Design Description
SDF
SDP Software Development Plan
SLP Sandia Laboratories Policy
SMP Software Management Plan
SQAP Software Quality Assurance Plan
SRS Software Requirements Specification
SSMP Software Support/Maintenance Plan
SSP Software Safety/Security Plan
SSTP Software System Test Plan
SUG Software Users Guide
SVVP
S I W Software

Software Development Folder (also known as Software Development File)

Software Verification and Validation Plan

Figure 3-3. Guidelines for Selecting a Document Set Based on Risk Score

24

L

Documentation Suggestion # 5
Establish a document configuration control plan when the project begins. -

3.2
Uniquely identifying successive versions, keeping a change history, and marking sections that have changed
from one version to the next provide document version control. These methods and some additional
considerations that may influence how documentation is controlled are described in the following
subsections.

How Can I Control the Document Version?

3.2.1 Configuration Control of Documentation
Sandia Software Guidelines, Volume 4: Configuration Management [SSGV~] addresses not only several
control options but the underlying management aspects of evolving engineering information as well. While
the focus in this section is controlling documentation versions, the reader should consider how changes to
documentation and other software engineering information are to be managed for the entire project.

3.2.1.1 Great Beginnings

As the project begins, control may be limited to saving copies of each iteration of the document or document
set. These copies can quickly become voluminous and untraceable, especially if changes are not marked or
some sort of unique identification is not used to differentiate the iterations. Another option is to just keep
the latest iteration. This option can present severe complications if the actual changes are not identified,
even when the date or some other document version identification is used. Also, if the reason for making
the changes is not identified, even single-person projects can unintentionally return to previously discarded
ideas and fruitless solutions. Therefore, regardless of how a project is started, uniquely identifying each
iteration, maintaining a history of the substance of the changes, as well as marking the changed sections is
recommended.

3.2.1.2 Life Cycle Considerations

Documentation Suggestion # 6
Control documents so all participants can have a common baseline.

The purpose of controlling documentation should be to ensure the engineering information accurately
reflects the evolving product. Such control should be part of a configuration management scheme designed
to met the needs of the project. As the project proceeds from concept to requirements definition to design to
implementation, information contained in the various documents must progressively be more tightly
controlled. That is, documents containing the information should have greater restrictions placed on them
in terms of who may make changes and why changes should be made. At selected points in the
development, some information may need to be frozen into a baseline from which future work can
confidently proceed. Changes to baseline information should be approached with great caution due to the
potentially high impact on project schedule and costs . However, having a baseline does not preclude
changes. It is intended to assure that changes are not made without the notification and concurrence of
those persons affected by the changes. See reference ISSGv4J for additional information on the concept of
Libraries as a means to control software documentation.

3.2.2 Examples

3.2.2.1 Internal Project: Manual vs On-Line Control

Documentation Suggestion # 7
If an on-line capability to mark changes is not available, then provide a

capability to compare documents and print differences.

For many small projects, most documentation can be maintained manually. That is, version identification
nomenclature is manually updated, documents and other information are stored and archived within the
framework of the computer system hosting the word processor, design tools, and compiler. Many of today's
processors and other software development tools have the capability to automatically mark changed sections
of the item being processed. Updating a change history must be performed manually whether the control is
primarily manual or through an on-line (automated) tool.

On-line control may be part of a Computer-Aided Software Engineering (CASE) tool or stand-alone
software configuration management tool. In these cases, version identification updating may be built into or
scripted into the tool; storing, archiving, and cross-referencing documents or other software development
information is performed within the scope of tool control. Even on small projects though, making use of an
automated tool to consistently update version identification and provide cross-referencing information is
extremely useful, particularly for code generation. As the project increases in size or people, on-line control
becomes more important. The management aspect of controlling software documents is more fully
discussed in SSGv4, sections 2.1, 2.2, 3.1, and 4.1.

3.2.2.2 Controlling External Customer Documentation Releases

II Documentation Suggestion # 8 II I Control the document set configuration over the entire software life cycle. 1
Release of software to an external customer requires that the person or group responsible for development
and/or support of the software maintain adequate control of the documentation describing the design of the
software in use by the customer until such time as the customer has been notified that it will no longer be
supported. Even then, an archive copy of all documentation should be kept until all official copies of the
software are retired. If multiple versions of the software are in current use by customers, careful attention to
maintaining the integrity of each version almost mandates the use of an on-line, automated configuration
control tool. Such a tool will provide a higher level of confidence that any changes made to one version that
affects another version will in fact be successfully implemented.

3.2.2.3 Maintaining Documentation

Documentation Suggestion # 9
Use documentation tools that are likely to be supported over the software's

life.

Although keeping track of documents and document versions over the life of a software product is
important, it is just as important to maintain version control of the tools used to create the documents.
Fortunately, most tools provide upward compatibility between versions. In addition, the most popular tools
often recognize the competition and provide ways of importing data from them. For example, Microsoft
Word provides help in importing files created by the Word Perfect word processing tool and vice versa. The
greatest problems may occur if a special software tool is used to create specific information for a document,
and the software vendor for that tool goes out of business or is merged with another business during the

26

software life cycle. Unless a copy of the tool is maintained by the project staff, it may be very difficult to
maintain software documents. These issues are more important for software projects having a long life
cycle since the tools are more likely to have different versions over time, and there are more opportunities
for bad things to happen to tool vendors. Another consideration is that successful documents may be useful
to other or future software projects. These projects will likely want automated access to the documents to
reduce duplicate effort. Although scanners may be useful in solving these problems, it is probably better to
have access to documents through the tools that were used to generate them originally.

This caution is just as important for automated tools used to maintain configuration control over the
documents. For instances where a CASE tool is used for this function, it is very important that the tool be
available not only for the most efficient maintenance of software code and documentation but also to control
it in the manner used throughout the software development. Since CASE tools are not as standard as
document generation (word processing) tools, their version control is important because there will be less
likelihood for compatibility if the CASE tool suddenly becomes unsupported. When the life cycle is long or
follow-on efforts require the reuse of documentation, attention should be given to license expiration dates
and the use of escrow agreements for software purchase options.

3.2.2.4 Using the Sandia Drawing System

Documentation Suggestion # 10
Use the Sandia drawing system identification scheme; archive software

I1 documentation in the drawing system. I1
Sandia has a corporate configuration management system that facilitates configuration control of
engineering information. Principally used by weapon development projects, this system is available to any
software development project. The system provides an identification scheme to differentiate versions of the
documentation that describe a software product. Documents are referred to as Drawings in the Sandia
Drawing System, a legacy from drawings of hardware components. Each document type has a prefix slaved
to a 6-digit part number that is unique for each unique software product. A two- or three-digit suffix
defines the version migration. For software, the drawing system represents a library in which stable
(baselined) information is stored. SSGv4, Chapter 3, contains a more detailed description of the Sandia
Drawing System and references the Engineering Procedures that define the Sandia Drawing System. In
particular, Engineering Procedure EP401045. Definition of Computer Software Configuration Items
[EP401045] defines the nomenclature, types of documents, and minimum document set for War Reserve
software product.

3.2.2.5 Energy Science and Technology Software Center (Export Control)

Documentation Suggestion # 11
Review the requirements of DOE Orders for applicability to the export of

software documentation.

Sandia is required to submit certain types of software products to the Energy Science and Technology
Software Center (ESTSC), in accordance with the Policy Statement from DOE Order 1360.4B
[DOE1360.4B]. "Scientific and technical computer software programs developed and/or modified during
work supported by DOE or during work carried out for others must be provided to the ESTSC for inclusion
in DOES information announcement and dissemination systems and, when appropriate, for dissemination
outside the Department. Such software shall be made available to the scientific, technical, academic, and
industrial communities, and to the public, only through approved channels as security, patent, contractual,
and other DOE policy considerations permit." includes Specialized
Information Analysis Centers which are activities that collect, evaluate, announce, and provide scientific
and technical computer software in specialized subject areas. The Specialized Information Analysis Centers

The term approved channels

27

are defined in DOE Order 1360.48 and are listed as: the Engineering Physics Information Center of Oak
Ridge National Laboratory; the National Nuclear Data Center of Brookhaven National Laboratory; and the
Bartlesville Project Office.

Certain types of computer software are excluded from these provisions. The exclusions are discussed in
DOE Order 1360.4B. In addition, DOE Order 1360.4B requires that all scientific and technical computer
software developed by Departmental Elements, contractors, and financial assistance recipients under their
purview contain specific Distribution Statements and Disclaimers on the cover and title page of all
documentation developed for that software and any computer-readable medium used for transmitting that
software. These statements currently read as follows:

DISTRIBUTION STATEMENT

"This computer software has been developed under sponsorship of the Department of Energy. Any further
distribution by any holder of this software package or any data contained therein outside of DOE offices or
other DOE contractors, unless otherwise specifically provided for, is prohibited without the approval of the
DOE Energy Science and Technology Software Center. Requests from outside the Department for DOE-
developed computer software shall be coordinated with the Energy Science and Technology Software
Center, P.O. Box 1020, Oak Ridge, TN 3783 1 .I'

DISCLAIMER

"This material was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States nor the United States Department of Energy, nor any of their
employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights."

3.3 Are There Tools to Assist Documentation?

Documentation Suggestion ## 12
Make sure you have a defined process into which selected software

documentation tools can be effectively integrated; tools are not a panacea for
a poor software process.

Many tools aid in all activities and phases of software documentation. A distinction, however, needs to be
made between tools one might use to generate and support software documentation versus methods used to
write a document. It is not the specific intent of this volume to describe how to write accurate and clearly
understood software documentation. Some thoughts on producing quality software documentation are
covered in section 3.5 of this volume. If you need or desire additional information on how to write
software documentation, a good reference is [BROCKMAN]. This book also has an extensive
bibliography of other materials related to the philosophies of writing software documentation. The
Software Technology Support Center [STSC] is a good source for the latest tool technology to support
software documentation.

This volume, and particularly this subsection, will concentrate on providing information on generic tools
and methodologies associated with those tools that can assist you in preparing quality software
documentation products. To this end, a documentation tool taxonomy is discussed. In addition, things you
may wish to consider in selecting and using tools and other available resources and software
documentation aids will be discussed. One key observation is to remember that tools can only assist you in
preparing a quality software documentation product. The soEtware engineering process, of which the
documentation is an integrated part, will likely be of more influence on the quality of the product than any
specific tools.

28

3.3.1 Documentation Tool Taxonomy
A taxonomy of commercial documentation tools is illustrated in Figure 3-4 [STSCdo]. The tool
applications listed in this figure are examples only. Every year brings the introduction of additional tool
applications and specific tools to support the applications, so this list may be outdated fairly rapidly. In
spite of this caveat, the tools that are likely to be of most interest over the next decade include those in the
categories of desktop publisher, graphics processor, and tools that form software integrated tool
environments. Additional information about these tools is provided in the following paragraphs. In
addition, Chapter 2 provides some futuristic documentation concepts for which a new generation of
documentation tools may be required. Other references that discuss Computer-Aided Software
Engineering tools include [SSGvS], [IEEE1209], [IEEE13481, and [SQAS-CASE].

3.3.2 Word Processors and Desktop Publishers
It is now possible to integrate text and figures on the same file in a word processing system. It is even
possible to identify key words that may be used to automatically build a document’s index. Some word
processors also have special modes for various programming languages (e.g., to assist with the syntax
features of the language). Where these word processors have allowed the author (or an editor, if assigned)
to integrate all of the capabilities of text, graphics, tables, and so forth, and to produce professional looking
documents printed on a laser printer, the systems have been called Desktop Publishers (DTPs). Many
DTPs provide an option to import graphics generated using graphics processors not already a part of the
DTP itself.

It is now possible to export or import most data between compatible computers. Therefore, various parts of
a document may be prepared on many different media and still integrated with a single word processing
tool to form a complete document. Be aware, however, that not all of these conversions may be
necessarily clean, and some effort may be required to convert special characters or handle capabilities in
one tool that are not recognizable on another tool.

3.3.3 Graphics Processors
Many of the modeling techniques used in software development use graphics. There are many tools that
provide utilities for creating, editing, and managing graphics. Some common examples of methods that
use graphical techniques and thus have a need for graphics processor tools include: Natural Language
(Nijssen) Information Analysis Method (NIAM), Structured Analysis, Structured Design, Object-Oriented
Analysis, and Object-Oriented Design. Such tools include generic drawing packages, special purpose
application packages, and software engineering technique-specific tools. These tools are usually part of a
Computer Aided Software Engineering tool set to assist in developing the software. There are a variety of
commercial tools that may be purchased to assist in developing required graphics.

Figure 3-4. Documentation Tool Taxonomy

30

3.3.4 Integrated Tool Environments
Tools in this category include workbench environments that integrate many tools together. Environments
include: UNIX platforms, "C" environments, "Ada" environments, and method-based environments such as
an Object-Oriented, Structured Design, and so forth. An integrated tool environment includes tools for
software management and software engineering. Documentation within such an environment is essentially
paperless, although the need for paper copies of almost any of the standard documentation information
could be produced through a documentation report generator capability. Almost all other tools are
candidates for inclusion in the integrated tool environment.

.-

3.3.5 What to Look For In SelectingkJsing Tools
Fairly obvious factors to consider when selecting software documentation tools for your project include:

cost versus benefit analyses;
applicability to your software documentation issues;
availability of and ease of obtaining the product:
how easy it is to use the product (human engineering);
hardware/software requirements and constraints;
staff training time;
acceptance by those who must use the tools;
compatibility relationships with other project hardware, software, and project standards;
supportability issues; and
version control of the tools.

Included in the supportability issues are such considerations as what kind of technical service support will
you receive if you have questions about tool usage or error messages, an evaluation of the vendor's history
in supporting previous version releases of a tool, an assessment of the upward compatibility record for the
tool vendor as new versions are released, and an understanding of the financial and other sound business
aspects of the vendor. The best way to get this information is to obtain as much vendor literature as
possible, and to perform an extensive search of various technical sources (such as magazines) which tend to
rate various vendors and their products regarding value, performance, reliability, repair service, and
technical support. Another good source of information is to ask those who have used the tool(s) on other
projects to determine their overall satisfaction with the factors mentioned above. Extensive guidance is
available in reference [IEEEI348] for the adoption of CASE tools, and in references [IEEE1209] and
[SQAS-CASE] for the evaluation and selection of CASE tools.

Version control of documentation tools is almost as important as configuration control of the software
documents themselves that were generated using those tools. The reason this is important is the need to
maintain documentation for existing projects and to use information from existing documentation to create
documentation for new projects. If you do not know which version of a documentation tool was used to
create a specific document, you may have great difficulty making future changes to that document. In
addition, if there is ever a need to use that documentation or parts of it for another project, you may not be
able to electronically reproduce it, requiring it to be retyped, scanned, or otherwise recreated These
activities can be very costly. Consider putting a note in the documentation that states what tools, and
versions thereof, were used to produce the document during its development or modification history.

3.3.6 How Can I Use the Templates In This Volume?
Document templates are a form of tool you can use to facilitate development of consistent software
documentation. Chapter 4 of this volume provides templates that can be used as guides to produce the
most common types of software documentation. The templates are primarily used by higher risk projects
as guided by the process and selection criteria previously described in Figures 3-1 through 3-3.

In addition to this hard copy volume, the templates described in Chapter 4 and a number of document
examples (not always in the format suggested by the template) are available on electronic media, generally

31

in the originally created word processor format. For any current updates to the templates and examples,
the reader is referred to these electronic media. See the end of section 1.4 for information on how to obtain
the electronic media.

3.4 Documenting Existing Software
In some cases a software program is operational but appropriate documentation either does not exist or
must be upgraded to be effective. The primary reasons for documenting existing software are the same as
for documenting software being newly developed: appropriate documentation improves understanding for
operational use and for modification to correct defects, add enhancements, and adapt to operational or
support environment changes. This subsection describes some methods for documenting requirements,
design information, and test cases and test results from existing software. A general context for these
methods is then described in terms of reverse engineering software and software re-engineering. In
addition, there is a description of some pitfalls to avoid when documenting existing software.

3.4.1 Documenting Requirements
Often situations arise in which an existing software system must be upgraded to correct existing problems,
provide system enhancements, or convert from one hardware platform to another. In these cases, it may be
necessary to create requirements documentation from scratch or update existing system products. Some
possible methods for capturing and documenting software requirements under these conditions include:

interview current users;
conduct questionnaire survey or poll users:

derive requirements from existing software source, execution of operational software, and other
possible documentation; and
reverse engineer design and requirements information from source code.

Frequently it is useful to combine several of these methods to accomplish the necessary capture of the
requirements information. Documenting the requirements can be accomplished by mapping the results into
the sections of an appropriately tailored Software Requirements Specification as described in section 4.1.
Traditional requirements gathering techniques are usually necessary even when documentation is current
and correct. As an example, the software may perform exactly as the documentation describes and may
execute as expected 100 percent of the time; however, the software still may not do what the customer
requires of the software. Traditional techniques such as polling and interviewing can help.

When there are a large number of users (customers) or the users are geographically dispersed, it may be
necessary first to poll the users to identify key aspects of the software and its use. The polling mechanism,
such as a questionnaire or survey, can establish a general view of the software use, its primary customers
and their satisfaction, and the functional requirements. With a large number of users the results might be
analyzed using statistics. The polling information might also identify more experienced users, the
functional distribution of software use among the users, and what issues need to be addressed in more
detail through the interview technique described in the next paragraph.

Interviews of current users can be conducted in a one-on-one setting in serial fashion to capture what an
existing software system is required to do. Often the interviewer is responsible for reconciling
inconsistencies across interviews. This responsibility is time consuming, filled with opportunity for errors,
and often frustrating. A better approach to interactive planning and requirements gathering is to convene
developers and their customers for an intense co-development (or in our case co-redevelopment) of the
software. In this approach, developers and customers become mutual partners in the requirements
gathering (and defining) process and exchange the serial process of interviewing for a parallel process of
joint system development. This is most effective when there are only a few knowledgeable users,
developers, or maintainers who need to be involved in the interactive process. Functions, performance
timing and response, and user interface specifications can be determined and documented in appropriate
sections of a traditional requirements documents.

32

An advantage to documenting the requirements of existing systems is the presence of source code and
potentially other documentation that may be used to supplement requirements gathering techniques
associated with software development. It is an advantage to have an operational software system when
trying to derive its requirements -- assuming the software system satisfies its current or expected
customers. However, existing documentation is often outdated, and determining which pieces of the
documentation are current may require significant time investment. Also, it may be necessary to use
reverse engineering methods to derive basic design information from the software source code in order to
begin a detailed derivation of the software’s requirements. Existing documentation from which
requirements can be captured may come in many forms. A few are described below:

Software development standards/guidelines/practices may also provide insight regarding how the
software was developed, what tools normally would have been used, and what documentation
deliverables might be available. Within the Sandia Software Guidelines, these management
documents are referred to as the Software Development Plan, the Software Quality Assurance
Plan, and the Software Configuration Management Plan.

0 Development documentation such as requirement specifications, design criteria, and test plans,
while least likely to be found or be current, may provide many details for components of the
system where few changes have been introduced. Within the Sandia Software Guidelines, these
development documents are referred to as the Software Requirements Specification, Software
Design Description, and the Software System Test Plan. There also may be individual software
development folders from which lower-level module requirements can be derived.

Graphical models such as Data Flow Diagrams, State Transition Diagrams, Entity-Relationship
Diagrams, Association Matrices, Action Diagrams, and others are documentation sources.

0 Customer User Guides, while providing a less technical description of the system, may offer a
roadmap for system functionality.

Corporate policy and business practices describe the current business environment: these should
be consistent with engineering and business software.

Existing systems have executable code, and typically the source code as well. If the source code is
consistent with the executable code, both the source code and any current comments are a likely source of
documentation for use in capturing requirements through reverse engineering or re-engineering methods.
This option is discussed in more detail in section 3.4.4.

3.4.2 Documenting Design Information
Unfortunately, there are situations in which software code is written but design documentation for that
software either does not exist or is insufficient for maintenance activities. In such cases, the use of manual
or automated methods may be useful to derive graphical models such as Data Flow Diagrams, State
Transition Diagrams, Entity-Relationship Diagrams, Association Matrices, Action Diagrams, and other
design documentation information.

If the only existing part of the software is executable code there may be an existing support tool to de-
assemble the machine code into an assembler code appropriate to the computational processor. Once the
software is in assembler code there may be support tools to construct basic flow diagrams that identify
control and data information. Whether the assembler code groups into recognizable modules will depend
on the application. The next step would be to try and identify the functional module groups from the entry
points and assembler jumps. This decomposition would provide the basic design functional hierarchy and
together with the flow diagrams could be the basis for the software’s design information. Without the
indicated support tools, it may be more useful to consider a re-engineering effort of the software.

If software source code exists in a higher order language than assembler code, then it is an important
documentation (and verification) activity to recompile the software and determine if the recompiled

33

software execution agrees with the current executable software. This verification is necessary in order to
preclude wasting time deriving design information from source code that does not agree with the executable
code. Results of the verification activity, the compilation information, and any symbolic execution traces
should be documented in a Software System Test Plan and appropriate software development folders (see
section 5.3). If there is confidence that the source code matches the executable software product, then
additional methods can be applied to derive design information.

Reverse engineering tools exist for most common higher order languages (e.g., Ada, C++, C, Pascal,
FORTRAN, COBOL). These tools accept source code as an input, organize the source code modules into a
library-like internal format, and provide design information as an output. Design information includes such
information as a data dictionary, call forward and backward tree chains, data flow diagrams, control flow
diagrams, and individual module design templates with entry points, parameter variables, and exit points
identified. This information is usually available in written reports, on-line files, or repeatable user-queries.
In addition, the tool capability often exists to group common design information such as the identification of
all locations where a variable is used (and its use by reference or modification). Such information can be
used for further reverse engineering and documentation activity. For example, once the indicated design
information is available, other design methods can be used to represent the design information (and
requirements information) in a standard format appropriate to the organization. This information can then
be the basis for a complete re-engineering effort or simply for supporting the current software operation and
maintenance. Without the automated tools a manual approach can be used to identify the most critical
software modules and construct higher level versions of the same design information as indicated above.
Once the design information is derived the information can be captured in a written form such as a Software
Design Description or an electronic media format appropriate to the organization standards and available
automated tool support.

3.4.3 Documenting Test Cases and Results
Assuming the existing software includes executable software, it is very useful to document what the
software does by executing a series of test cases. The test case setup, description, inputs, outputs, and any
failures become the basis for satisfying other documentation needs. For example, the test cases and results
can be documented in an appropriately tailored Software System Test Plan. The test cases become the
basis for specifying the software requirements that can then be documented in an appropriately tailored
Software Requirements Specification.

The focus of the test cases should be on the performance of user tasks and the use of externally observable
inputs and outputs while the system containing the software is exercised in an operational-like
environment. During the execution of the test cases it would be very valuable to capture what part of the
software is exercised (e.g., paths executed). Automated software tools and module instrumentation
methods are available to trace the paths in the software that are exercised during system execution. From
this test path trace information, static analysis can be conducted to identify which non-exercised parts of
the software may not be required. Further test cases can be designed for unit and other specialized test
environments to confirm the function of the non-exercised software paths. Documenting this
correspondence between test results and existing software code provides insight into what the software
requirements specification should be. Through this process it should be possible to identify those parts of
the software whose failure is critical to the software's performance. More exhaustive testing of critical
software components could then be conducted. Other criteria for identification of further tests might be
modules that have a high number of control branches or implement a complex algorithm.

The Software System Test Plan that results from these efforts becomes the baseline for future regression
testing as the software is modified. Other software documentation developed as a result of the testing
process should also be updated as needed.

3.4.4 Reverse Engineering Software Documentation
The term reverse engineering means to build products normally constructed during an earlier life cycle
phase from products and other information available from a later life cycle phase. If design documentation

34

does not exist for a software product but source code does exist, then to create design information from the
source code (and perhaps information available from available personnel or operational use) would be an
example of reverse engineering software documentation. The reverse engineering process may result in a
graphical model or a textual representation of the product. Reverse engineering is often used in conjunction
with forward engineering techniques to either verify the reverse engineering process or reengineer the
existing product.

Reengineering is the reconstitution of a product either from the combination of reverse and forward
engineering or altering of a product within the same phase of the software life cycle. Code that is
restructured without generating data or process models is an example of re-engineering within the same
phase of the life cycle. Code re-structuring tools exist with varying capabilities. The capabilities range
from a simple physical rearrangement of the code in accordance with style guidelines to graphically
depicting process flows and regenerating the code using updated syntax and coding structures. The
capability to re-design the system or add functionality is not typically part of this class of tools.

Keeping detailed design information current as development proceeds can be a tedious job. The detailed
design information may be considered extremely important when modifications to the software are
considered either later in the initial development or during maintenance. Unfortunately, this design
information is useless, even harmful, if it is inaccurate. A reverse engineering tool can be used to
advantage by deriving as-built design information and facilitating the comparison of this information to the
as-built code.

The following are desirable characteristics of a reverse engineering tool:

the tool should generate graphical models which the software engineer can manipulate:
the tool should generate data and process models: generating the data model is far easier than
generating process models yet much of the work required to re-engineer software is process-
driven:
the tool should allow or facilitate forward engineering of modified models (preferably within the
same suite of tools);
the tools should generate the same level of code that was submitted for reverse engineering; some
code generators only generate code for the data in the system: other generators produce skeletal
programs which the engineer is responsible for completing; higher level generators produce
complete source code: upon completion, a re-engineering tool should not transform a source
program into any less functional form than what it was; and
the tool should populate a data dictionary, repository, or encyclopedia, depending on the
sophistication of the tool: a data dictionary might contain data names, sizes. types (of data),
descriptions, and edit criteria: repositories and encyclopedias are usually perceived as having
greater capability capturing process and sub-process models, where-used information, and project
planning criteria.

The use of reverse engineering to generate as-built software documentation has certain advantages.
However, it can also lead to dangerous development practices. The processes and tools used to develop
documentation for existing systems require the same rigor required of products when originally engineered.
This rigor implies that processes and tools be consistent, complete, and correct. Training and knowledge in
the software application and the techniques selected are prerequisites to success. Also, a software project
should not decide that it can skip documentation of a development phase since it can later reverse engineer
the needed documentation from source code. A design phase serves a larger purpose than just to produce a
Software Design Description. More information about reverse engineering and reengineering software
documentation is contained in references [ARNOLD] and [WCRE].

3.4.5 Some Potential Problems to Avoid

An abbreviated discussion of some possible pitfalls in creating documentation for existing software is
contained in the following paragraphs.

Limitations of Tools
Some tools are independent of any particular methodology and hence make enforcement of a project’s
specific methodology very difficult. specific
methodologies. This dependence requires that the project use one of the methodologies supported by the
tool. This dependence may limit the type and form of software documentation that can be created. The
likelihood that a software engineer will find a tool, outside an integrated environment, that aligns precisely
with a project’s development methodology is rather low. Empirical evidence suggests that the market for
documentation tools is reactive rather than proactive. That is, a problem exists for which a product is
developed. Ensure that the tools and techniques selected do indeed match the documentation problem to
be solved and the needs of your development and maintenance processes.

Many tools are totally dependent on one or a few

Reliance on Tools
Depending on the tools available, different levels of sophistication are often required by the software
engineer. All tools have strengths and weaknesses. An unfortunate side effect of automated software tools
is the perception that the tool can be used by almost anyone with little or no formal training. The opposite
is typically much closer to the truth. Sophisticated tools generally require sophisticated users who can
differentiate among the features of the tool and the needs of the project. Understanding the terminology of
the processes being used by the project will greatly increase the likelihood that tools can be selected with
capabilities that support the project processes and with the appropriate level of software engineering
sophistication. Often vendors will offer to demonstrate their solution on a piece of an existing system.
Vendors may accommodate an in-house evaluation for the cost of shipping and training. Maximize the use
of both these types of opportunities.

Reliance on Existing Documentation
Documentation that has not been maintained is defective documentation. Approximately 25 percent of all
software defects have been identified as being related to the documentation. While these guidelines
suggest plans and documents to ensure the supportability of the software, including the documentation,
reality may be different. Prevention, through diligent upkeep, remains the best prescription. The use of
Computer-Aided Software Engineering tools that require changes to data and process models and not to
source code is a practical way to ensure software product documentation is current.

Emerging Technologies
As certain as change is itself, so is the dating of this section by emerging technologies. Object-oriented
techniques, client-server architectures, and network communication advances promise to rewrite how
software is developed and supported. The use of networks and electronic media to communicate project
and software documentation information will have a major impact on the form and content of software
documentation. The automation of software development will have a powerful impact on what software
information is of value for both the developer and supporter. The distinction between software
development and support will be in the way integrated software engineering environments are used to
manipulate software documentation (representation) information.

Software engineers can now develop good or poor systems faster than ever. Despite these advances,
software development productivity has not soared. Relying on tools and technology to solve scientific,
engineering, and business applications avoids the challenge of re-using and re-engineering application
practices. The most significant advances in productivity still await the maturation of how software
information can be efficiently represented for reuse.

36

3.5 Are There Methods to Improve Documentation Quality?

3.5.1 Documentation Quality Characteristics
Throughout this guide there are descriptions of what each type of document should contain and some hints
on which processes produce the documentation. However, what characterizes the quality of
documentation? Documentation can make everyone's (developer, customer, and supporter) software-
related tasks much easier or harder -- depending on the quality of the documentation. Some of the more
important documentation quality factors are:

correctness: the extent to which documentation is free from defects:
maintainability: the ease with which documentation can be modified for software corrections,
functional and performance enhancements, and adaptations to changes in the system environment:
readability: the ease with which documentation is understandable to the reader;
simplicity: the extent to which documentation is free from extraneous information, cumbersome
organization, and complex descriptions of the software product; and
usability: the extent to which documentation can be used to facilitate the operation and
maintenance of the software.

0

0

0

0

3.5.2 Documentation Review Methods
One of the easiest ways to ensure documentation quality is to review the documentation for defects relative
to quality factors such as listed above. The lower level characteristics and measures that precisely define
each of the quality factors will depend somewhat on the software application domain and the
documentation product being reviewed. There are several methods of review:

informal review: someone else in your group looks over the documentation to see if it has
problems:
walk through: similar to an informal review except one leader typically guides the discussion or
presentation, while the reviewers listen, ask questions, and provide suggestions;
technical (peer) review: several technically competent people review the documentation and
then hold a semi-formal meeting to discuss the document and what they have found;
formal review: specific reviewer roles are defined and process steps followed; documentation
defects are identified, recorded, classified, and corrected using well-defined procedures; the
documentation is signed-off and released into configuration management control; Sandia provides
training on this method of review which is also called a software inspection;
inspection: same as formal review; and
audit: an independent agent checks the as-built documentation for compliance of the format,
content, development process, and/or perhaps the verification of any processes associated with the
review or production of the documentation; compliance may be to external or internal
organization standards and guidelines.

The extent of the documentation review is dependent on the formality of the software process to be
followed on the project. If the software project is to develop a 200 source line program that will be used
only within the organization, then the documentation need not be extensive nor require much more than an
informal review. If the project is a Sandia-wide software project or is a weapons-related software project,
then a more formal process needs to be followed for documentation development and review to ensure the
appropriate level of quality.

3.5.3 Documentation Inspection Process
Software inspections are formal peer reviews of software documentation such as requirements
specifications, design descriptions, test plans, and source code. Any product generated during the software
life cycle can be inspected. Software inspections are formal in that there is a set agenda. A limited amount
of material is covered in a set amount of time. Those attending the review have clearly defined roles. All

37

issues raised at the inspection are rigorously recorded and resolved. Software inspections are peer reviews
that management should not attend. This restriction allows those in attendance to concentrate on analyzing
the material at hand rather than getting involved in political maneuvering that might occur if supervisory
personnel were present. It also eliminates a human tendency to look to management for leadership and
approval. The software inspection process has output that is also a part of the software's documentation.

A software inspection's goal is to find defects by evaluating whether the software documentation products
conform to quality-related factors. Characteristics that are checked include: lack of ambiguity, verifiability
of requirements, correctness of logic and data information, completeness of the information, adherence to
documentation standards, and consistency within the product being inspected and with other products .
This technique can be applied to text, graphical information, and source code. It can be used to examine
source listings in any language, text-based documentation, and specifications that use formal languages. It
is this broad applicability that makes software inspections such a powerful tool to employ during software
development and support.

38

4 Document Guidelines: Format and Content
The elements and content of a software documentation set are dependent upon the type and complexity of
the software to be developed. A project to develop a database to track office supply inventories within a
department is vastly different than a project to provide the software for use-control functions of a nuclear
weapon. Some documentation is recommended as part of every software project no matter how small or
large. Small software projects may expand into programs that are used lab-wide or, through technology
transfer, are used by external organizations. Documenting the software processes and resulting products
for a project is also a recognition that developers cannot always remember everything and may not even be
around to maintain the programs they create. As a result, development projects need to select the types and
extent of documentation that will produce a reasonable set of documents. Approaches to selection of
software documents for a project are provided in Chapter 3 and its associated Appendix D.

This chapter describes the key software documents from which a project document set can be selected.
Specifically, this chapter establishes guidelines for the development of key software documents. Each
section describes a single document from the following points of view and provides an outline identifying
the potential contents of that document:

0

0

0

Abstract - includes purpose of the document and an overview of its contents;
Audience - identifies the potential users of the document and how it might be used:
Responsibilities - describes who is responsible for writing, reviewing, and approving the
document;
Content - describes the requirements for and typical content of the document, considerations
relative to its production, and relationship of the document to the project’s software development
activities:
Maintenance - describes considerations relative to keeping the document current, who is
responsible for such efforts, and an overview of how the maintenance is to be performed; and
Other Alternatives and Issues - describes additional considerations relative to creation,
maintenance, and distribution of the document.

Sometimes, the same kind of information is called out in the content descriptions of more than one of the
key software documents. Only one project document should include such information, while other project
documents should reference this information. In addition to the suggested content outline, each document
should have a cover page, sign-off page to indicate initial release responsibility, change page for recording
document update information, table of contents, and list of illustrations as appropriate. The control version
of each document should be clearly indicated. Development versions can be controlled through a date
located on each document page. Release versions can be controlled through an identification scheme such
as required for War Reserve software (see references IEP4010401 and [EP401045]). For each document
described in this chapter there is a corresponding thematic template available on electronic media (see
subsection 1.4) that provides an expanded set of guidelines for completing each section of the document.
The documents addressed in this chapter are summarized in the table below.

~~ ___

14.11 I Software Verification and Validation Plan (SVVP) I

4.1 Software Management Plan (SMP)

4.1.1 Description
An organization's Software Management Plan (SMP) may be implemented using a multi-tiered approach.
This approach allows for definition of software management policies and strategies at the organizational
level (see reference [SLPlOll]) while accommodating the specific management approach for the types of
software acquired, developed, used and supported at the project level. The software managed by an
organization is identified in that organization's S M P .

4.1.1.1 Abstract
The purpose of a Software Management Plan is to describe how an organization manages its software
resources consistent with: Sandia Laboratories Policy 101 1 [SLPlOl 11; Engineering Procedure 401045,
Definition of Computer Software Configuration Items [EP401045]: and DOE Order 1330.1D, Computer
Software Management [DOE 1330.1Dl. A SMP, in conjunction with other plans such as the Line Practices
for Environmental Safety & Health (Conduct of Operations), software standards, and project plans
constitute the software management practices for that organization. An organization may be a specific
Sandia line element (e.g., center, department), a combination of such line elements, a functional area that
cuts across line elements to accommodate a specific functional need (e.g., information systems, nuclear
weapons), or an individual project.

A Software Management Plan is used to both document and guide an organization's software engineering
environment. It addresses management of the software life cycle with respect to development,
maintenance, customization, cost, release, security and safety, software sharing and reuse, and software
management cost factors. In addition, it describes the methods, tools, and techniques to be used to ensure
that an organization's software assets are properly acquired, developed, used, and supported. More
detailed information and specific project variances may be provided in a software project's selected
document set.

Preferably, an organization would first develop a Software Management Plan that represents their current
software engineering management practices. Through a continuous software process improvement effort,
the S M P would evolve to document the improved software engineering management practices.

4.1.1.2 Audience
The Software Management Plan is intended for the following audiences:

0 Software Program Management - provides an overall plan for conduct of software projects
while meeting the goals and standards for a specific organization, project types, and customers:

0 Software Development Personnel - provides conventions, methodologies, and techniques
approved for use on software projects within the organization: as such, it also provides a ready
reference for use by software personnel who are new to the organization or an on-going project;
External Customers - provides clarification concerning software management approaches used
on projects by the development organization; and
Auditors - provides a basis against which compliance with DOE Order 1330.1D and Sandia
Laboratories Policy 101 1 may be verified.

4.1.1.3 Development, Review and Approval Responsibilities
An organization's management is responsible for allocating the resources necessary to develop and
maintain a Software Management Plan. The S M P should be written by members of the organization who
are familiar with the practices and conventions used by that organization's software personnel. The
organization's management and senior software engineers should review and recommend changes to the
draft plan. The SMP should be approved by the head of the organization covered by the plan: e.g., the

40

center director, department manager, or project leader. It is important to establish interfaces with other
organization personnel and ongoing activities while developing the S M P including:

0

0

0

project leaders to ensure coverage with software-related projects already underway;
conduct of operations management to eliminate redundancy with software processes; and
strategic planners to anticipate future directions.

4.1.1.4 Content Guidelines
The Software Management Plan describes the overall approaches to development, documentation, and
maintenance of software within the organization. The plan addresses management of software programs,
life cycles, release, and security.

4.1.1.5 Maintenance
The Software Management Plan defines the current software engineering practices within the organization.
Conceivably, these practices will continue to change as technology and software improves. The
organization covered under the SMP needs to review and modify the SMP at least on an annual basis.
Adoption of new methodologies, preferred processes, tools, and techniques, as well as the release of new
software products, may occur more frequently. Any substantial changes to the operation or development
environment need to be incorporated into the SMP as soon as it is reasonably possible.

4.1.1.6 Other Alternatives and Issues
The Software Management Plan may consist of a paragraph or section in the organization’s Conduct of
Operations.

4.1.2 Template Outline
An outline of a Software Management Plan, based on reference [SLPlOI 11, is illustrated in Table 4-1.

Table 4-1. Software Management Plan

1. Introduction
1.1 Purpose

1.3 Definitions, Acronyms, and Abbreviations
1.4 References

2. Implementation
2.1 Plan Dependencies
2.2 Assumptions and Responsibilities

1.2 scope

3. Program Management
4. Life Cycle Management
5. Inventory Management

5.1 Function
5.2 Degree of Customization
5.3 cost
5.4 Degree of External Impact

6. Release Management
7. Security Management
8. Software Sharing
9. Software Process Improvement

4.2 Software Development Plan (SDP)

4.2.1 Description
The execution of most software projects should be based on a set of practices, procedures, and processes
defined by management for use by team members during the software development efforts. A properly
prepared Software Development Plan conveys these management controls and a project schedule. The
schedule itself should be based on milestones and deliverables (documents and products) and a work
breakdown structure defined to achieve the development schedules and meet the deliverable dates. This
section does not specify any particular techniques to be used during the software development process but
does provide a template as an aid for preparing the SDP.

4.2.1.1 Abstract
The purpose of a Software Development Plan is to document what methods and techniques will be used to
manage a software project. The SDP defines the technical and managerial processes employed during a
project, a detailed schedule including milestones and deliverables, a detailed budget, a categorization of the
personnel resource needs and distribution as a function of time, the support environment and tools to be
used, and the perceived risks relative to the schedule and technical hurdles. The SDP provides a detailed
refinement of the applicable Software Management Plan to a specific project. The SDP should be a living
document, continually updated so as to provide current information as well as comparisons with the
previously generated project estimates.

4.2.1.2 Audience
The Software Development Plan is intended primarily for the following three audiences:

0 Software Project Management - provides an overall plan and schedule for the implementation of
software development processes, utilization of resources and tools to be used, and identification
of potential problems that may be encountered; the SDP also serves as a basis against which to
measure progress during the software development effort:
Software Development Personnel - software designers, programmers, analysts, testers, and
maintainers may benefit from the overall program picture provided by the SDP in the form of
clearly defined goals, expected work products, team interface coordination, standards to be
followed, and tools that are planned for use; and
External Customers - the SDP will give customers an estimate of how and when project goals
will be met and whether the project risks have been properly identified and addressed.

4.2.1.3 Development, Review, and Approval Responsibilities
Software project management is responsible for preparing an appropriate Software Development Plan for
the project; however, managers cannot do it in a vacuum. The responsibility for writing the SDP is a
combined effort of the software project manager and the software developers knowledgeable of the
software technologies and resources necessary to prepare the required product for a customer within
projected budgets. The software manager or project manager should be responsible for sign-off of the SDP
to indicate the initial release. Once the Software Development Plan is reviewed/inspected and the sign-off
process completed, the SDP should be placed under project configuration management control.

4.2.1.4 Content Guidelines
A Software Development Plan typically contains the following information:

technical activities/tasks:
management activities/tasks;
activity/task descriptions;
product qualification and control;

42

.-
0 resource assignments;
0 schedule and schedule dependencies:
0

0

major technical and schedule risk areas; and
evolution and working document concepts.

4.2.1.5 Maintenance
The Software Development Plan is a living document, representing the evolution of the software project
from the planning information to as-built information. Revisions to the Plan should be published
periodically throughout the software development phase, particularly if the phase lasts for a year or more.
The Plan necessarily tracks changes to the estimates and events/reasons for the changes. The SDP is
controlled within the guidance of the Software Configuration Management Plan.

4.2.1.6 Other Alternatives and Issues
The Software Development Plan also documents lessons learned in the evolution of the plan and the
project. The Software Development Plan may contain references to separate, more detailed plans such as
an SQAP or SCMP. This is particularly true for large projects, where configuration management and
quality organizations typically require more resources.

4.2.2 Template Outline
An outline of a Software Development Plan, based on the Software Development Plan in reference
[IEEE1498], is illustrated in Table 4-2.

Table 4-2. Software Development Plan

1. Introduction
1,l Identification
1.2 System Overview
1.3 Document Overview
1.4 Relationship to Other Plans

2. References
3. Overview of Required Work
4. Plans for Performing General Software Development Activities

4.1 Software Development Process
4.2 General Plans for Software Development
Plans for Performing Detailed Software Development Activities
5.1 Project Planning and Oversight
5.2 Establishing a Software Development Environment
5.3 System Requirements Definition
5.4 System Design
5.5 Software Requirements Definition
5.6 Software Design
5.7 Software Implementation and Unit Testing
5.8 Unit Integration and Testing
5.9 Software Item Qualification Testing
5.10 SoftwareFIardware Item Integration and Testing
5.1 1 System Qualification Testing
5.12 Preparing for Software Use
5.13 Preparing for Software Transition
5.14 Software Configuration Management
5.15 Software Product Evaluation
5.16 Software Quality Assurance
5.17 Corrective Action
5.18 Joint Technical and Management Reviews
5.19 Risk Management
5.20 Software Management Indicators
5.21 Administrative Security and Privacy Protection
5.22 Managing Subcontractors
5.23 Interfacing With Software IV&V Agents
5.24 Coordinating With Associate Developers
5.25 Project Process Improvement

5 .

6. Schedules and Activity Network
7. Project Organization and Resources

7.1 Project Organization
7.2 Project Resources

8. Notes
Appendices

44

4.3 Software Quality Assurance Plan (SQAP)

4.3.1 Description
The purpose of a Software Quality Assurance Plan is to document the methods and techniques that will be
used to verify and validate that software products have the requisite quality characteristics necessary to
satisfy customers and any regulations and standards applicable to a specific software project.

4.3.1.1 Abstract
The Software Quality Assurance Plan for a project includes identification and descriptions of: reference
documents; management structure and responsibilities; software documentation products to be developed
and how they are to be checked for accuracy: standards, practices, and conventions that are applicable to
the project and its products; reviews and inspections that are to be performed tools, techniques, and
methodologies that will be utilized by the project team; configuration management and controls: records
collection, maintenance, and retention requirements; and verification methodologies that will be applied.

4.3.1.2 Audience
The Software Quality Assurance Plan is intended primarily for use by the following four audiences:

0 Software Project Management - provides an overall plan for ensuring that approved software
quality techniques are being applied throughout the software project;
Software Development Personnel - provides an identification of quality standards expected for
the software products and documents to be produced: as such, it is a reference for use by software
personnel who are new to the organization or an on-going project;
External Customers - provides clarification concerning the software quality standards that are to
be enforced by the development organization: and
Auditors - provides a basis against which compliance with software quality assurance standards
and requirements may be verified.

0

4.3.1.3 Development, Review, and Approval Responsibilities
Software project management is responsible for chartering and allocating the software project or Quality
Department personnel resources necessary to develop and maintain a SQAP. Responsibility for developing
the Software Quality Assurance Plan rests with the organization developing the software, preferably
someone familiar with software quality assurance techniques. Software engineers, their management, and
when appropriate their customers, review the plan. The SQAP is approved by the head of the organization
developing the software: e.g., center director, department manager, or project leader. The plan assigns
responsibility for its implementation, required resources, scheduling, and distribution.

Several interfaces to other ongoing activities within the organization are encouraged while developing the
SQAP including:

project leaders to ensure consistency with system development projects already underway;
organization managers to ensure consistency with other software projects and eliminate
unnecessary redundancy among them; and
strategic planners to anticipate and incorporate future software development/documenttion
concepts and technologylenvuonment upgrades in the SQAP for an ongoing project.

The Software Quality Assurance Plan should be developed and approved during the initial period of the
software project. Once the SQAP is reviewed/inspected and the sign-off process completed, the S Q M
should be placed under project configuration management control.

45

4.3.1.4 Content Guidelines
The reference [SSGvl] provides guidelines for the content of a Software Quality Assurance Plan based on
tailoring of the plan in reference [IEEE730]. The following information should be provided in the SQAP:

identification of software product to which it applies;
standards, regulations, and measures that provide quality criteria to be satisfied by the software
products;
project organizational structure and personnel responsible for conducting the quality assurance
activities;
software product reviews and the review mechanism (e.g.. software inspections) that will be used;
software control mechanisms for project information, problem reports, and deliverable products:
project records collection and maintenance information;
project management and technical training plans; and
identification of areas of risk and possible strategies to mitigate the risks.

4.3.1.5 Maintenance
The Software Quality Assurance Plan should reflect the current software quality practices within the
organization. Conceivably, these practices will change during an on-going project as technologies and
methodologies improve. Consideration should be given to the following throughout the development and
maintenance of software:

recommending specific changes;
reviewing changes;
implementing approved changes; and

0

identifying options for changes to the plan;

managing the release of those changes.

4.3.1.6 Other Alternatives and Issues
When an independent quality organizations is used for qualification of the software product, the SQAP can
be an input to the qualification process but generally will not be a substitute for the qualification plan. The
SQAP information may be included in the Software Development Plan. Project SQAF's may be tailored
from an organization level SQAP. See reference [SSGvl] for more information on SQAF's.

4.3.2 Template Outline
An outline of a Software Quality Assurance Plan, based on reference [IEEE730], is illustrated in Table 4-3.

46

Table 4-3. Software Quality Assurance Plan

1. Introduction
1.1 Identification
1.2 System Overview
1.3 Document Overview
1.4 Relationship to Other Plans

2. References
3. Management

3.1 Organization
3.2 Tasks
3.3 Responsibilities

4. Documentation
4.1 Purpose
4.2 Minimum Documentation Requirements
Standards, Practices, Conventions and Metrics
5.1 Purpose
5.2 Content

6. Reviews and Audits
6.1 Purpose
6.2 Minimal Requirements

Problem Reporting and Corrective Action

5.

7. Test
8.
9. Tools, Techniques, and Methodologies
10. Code Control
1 1. Media Control
12. Supplier Control
13. Records Collection, Maintenance, and Retention
14. Training
15. Risk Management

* Appendices

.

47

4.4 Software Configuration Management Plan (SCMP)

4.4.1 Description
Software is subject to constant change during its life cycle. Such changes are normally due to changes in
user requirements, defects discovered in code, or changes in technology such as hardware or software
support upgrades. Establishing appropriate controls is critically important to ensure that all affected
configuration items are corrected according to established, approved, change-control procedures. These
controls are described in a Software Configuration Management Plan (SCMP).

4.4.1.1 Abstract
Configuration management procedures are established at the beginning of the software development cycle.
Procedures include identification, control, reporting, and auditing of software configuration items.
Configuration items include elements such as specifications, design documents, test documentation, and all
software code and tools whether purchased or developed.

4.4.1.2 Audience
The Software Configuration Management Plan is intended primarily for the following five audiences:

Software Project Management - provides an overall plan for the conduct of software
configuration management efforts to support the establishment and management configuration
baselines and the procedures that will be followed to control changes to those baselines;
Software Development Personnel - software engineers, programmers, and are provided with a
source of information about the tools and methods that will be used to perform the configuration
management functions; of particular interest are the policies and procedures that will be followed
in reporting and tracking problems and managing control of changes;
External Customers - provides clarification concerning the approaches that will be used to
manage the configuration of the software and identification of the configuration baselines that will
be established and controlled; of particular interest are the policies and procedures that will be
followed in reporting and tracking problems reported in the operational use of the software by the
customer:
Software Configuration Management Personnel - provides software configuration management
personnel with a reference that identifies the policies and procedures that they will follow in
carrying out their functions: discussions will also address subjects such as problem reporting and
tracking, configuration control boards, software libraries, control and updating of library
documents, configuration management tools and support facilities, version builds, and so forth;
and
Software Quality Assurance Personnel - software quality assurance personnel will have access
to the information necessary to measure the effectiveness, accuracy, and consistency of the
software configuration management and change control processes.

0

4.4.1.3 Development, Review, and Approval Responsibilities
Usually an individual familiar with configuration management procedures writes the SCMP. This person
may be a member of the software development team or quality assurance. The project leader reviews and
approves the SCMP. In some cases, customer approval may also be required. The project leader, customer
representative(s), SCMP author(s), and software quality personnel sign the SCMP after final
review/inspection. Once the sign-off is complete the SCMP is placed under project configuration
management control.

48

4.4.1.4 Content Guidelines
Configuration Management establishes a comprehensive set of activities that are intended to capture the
essence of the design and its definition at any point in time. Configuration Management also provides a
basic framework that facilitates change approval, implementation, and tracking throughout the life of the
product. The major components of a Software Configuration Management Plan include:

0 overview of plan;
0 structure of the configuration management organization and membership of the Configuration

Control Board;
0 policies and requirements relative to software configuration management and control; and
0 identification of configuration management tools and methodologies.

4.4.1.5 Maintenance
Once the Software Configuration Management Plan is approved by program management it should not
significantly change during the course of the project. Should changes be required, section 6 of the Plan
provides the necessary steps.

4.4.1.6 Other Alternatives and Issues
The Software Configuration Management Plan may also be incorporated as part of the Software Quality
Assurance Plan or, for smaller projects, as part of the Software Development Plan. Project SCMPs may be
tailored versions of a general organization level SCMP. See reference [SSGV~] for more information on
SCMPS.

4.4.2 Template Outline
An outline of a Software Configuration Management Plan, based on reference [IEEE828], is illustrated in
Table 4-4. The guidance in references [IEEE1042] and [SSGV~] is very helpful.

Table 4-4. Software Configuration Management Plan

1. Introduction
1.1 purpose
1.2 scope
1.3 Definitions and Acronyms
1.4 References

2.1 Organization
2.2 SCM Responsibilities
2.3 Applicable Policies, Directives, and Procedures

3.1 Configuration Identification

2. Management

3. SCM Activities

3.1.1 Baselines
3.1.2 SCM Libraries

3.2.1 Software Change Requesmequesting Changes
3.2.2 Functions of the Configuration Control Board
3.2.3 Evaluating and Implementing Changes

3.2 Configuration Control

3.3 Configuration Status Accounting
3.4 Audits and Reviews
3.5 Interface Control
3.6 Subcontractor/Vendor/S upplier Control
3.7 Records Collection and Retention

4.1 Configuration Control Board
4.2 Baselines
4.3 Change Control
4.4 Status Reporting, Reviews and Audits

5.1 Tools, Techniques and Methodologies
5.2 Personnel
5.3 Training

6. Plan Maintenance
Appendices

4. Schedules - SCMP Implementation

5. Resources

50

4.5 Software Requirements Specification (SRS)

4.5.1 Description
The Software Requirements Specification is the document that captures the software product functional
and performance specifications agreed to by the customer and the developer. The SRS is the most
important document a developer produces and is the one most likely to impact the quality of software
product items.

4.5.1.1 Abstract
The Software Requirements Specification defines the functions, performance, interfaces, and constraints to
be implemented by a particular software product, program, or set of programs. In addition, it provides the
basis for validating that the software satisfies the requirements for the end product.

4.5.1.2 Audience for the Software Requirement Specification
The Software Requirements Specification is intended primarily for the following seven audiences:

System Project Management - provides system project managers with software-related
descriptions of the system requirements that have been allocated to software for their satisfaction;
this information is useful in evaluation of proposed changes to system and/or the hardware being
procured or developed for use in that system;
Software Project Management - provides software project management with detailed
documentation of the specific requirements that must be designed, implemented, and tested: this
information supports estimation of and planning for the time and resource allocations to complete
the expected work;
Software Development Personnel - provides software developers precise documentation of the
software specifications and technical definitions for the software functions that are to be
implemented;
External Customers - provides clarification of and a basis for agreement on the software
functions that are to be developed and implemented and the methods (demonstration, test,
inspection, or analysis) by which satisfaction of each of the specified requirements will be
validated:
Software Configuration Management - provides software configuration management with the
starting point for evaluating the accuracy of reported problems and the impact of proposed
changes resulting from evaluation of those problems;
Software Test Personnel - provides software testers with technical descriptions of each of 11
software requirements and the methods by which their satisfaction will have to be validated; and
Auditors - the effectiveness of the system can be audited against known requirements prior to or
after customer delivery.

4.5.1.3 Development, Review, and Approval Responsibilities
It is the responsibility of software analysts to derive the SRS from the system requirements defined by the
customer. Software testers review the derived requirements for testability and understandability. A formal
software requirements review (SRR) may be performed for the program management and the customer.
The project leader, customer representative(s), and software quality assurance sign the SRS after final
review/inspection. Once the sign-off is complete the SRS is placed under configuration management
control in accordance with the Software Configuration Management Plan.

4.5.1.4 Content Guidelines
A Software Requirements Specification defines the functionality of and acceptlreject criteria for the
software to be developed. The SRS provides the basis for derivation of the design and development of the
test descriptions. The basic content includes:

General description of the software:
Specific requirements such as those for:

3 functionality to be provided:
3 performance:
3 specialty attributes such as security, safety, reliability, and maintainability: and
3 design constraints.

0

0

external interfaces to other software and hardware:

4.5.1.5 Maintenance
The Software Requirements Specification may need to evolve as the development of the software product
progresses. It may be impossible to specify some details at the time the project is initiated and this may
lead to prototyping. Additional changes may ensue as deficiencies, shortcomings, and inaccuracies are
discovered during development of the prototype software product items. All changes to the requirements
should be reflected in the SRS. Two major considerations in this process are:

requirements should be specified as completely as possible, even if changes can be foreseen as
inevitable: and
a formal change process should be initiated to identify, control, track, report, and incorporate
changes.

0

0

4.5.1.6 Other Alternatives and Issues
The requirements in a Software Requirements Specification may be explicitly stated by the user or may be
allocated to computer software through a system requirements analysis process. A prototype is also a form
of requirements specification and can be used to supplement, but not replace, an SRS. The developer
would still be responsible for obtaining formal approval from the customer for requirements developed as
the result of prototype efforts. An SRS, or equivalent, is required by reference [EP401045] for War
Reserve software projects.

4.5.2 Template Outline
An outline of a Software Requirements Specification, based on reference [PPSD], is illustrated in Table 4-5.
This format is a slight variation of the outlines provided in reference [IEEE830] that includes eight
template options for section 3 of the SRS. The eight template options include section 3 organized by
(version 1) mode, by (version 2) mode, by user class, by object, by feature, by stimulus, by functional
hierarchy, and by multiple organizations. The mode refers to the way in which the software is used: for
example, for training, normal use, emergency use, and so forth.

52

Table 4-5. Software Requirements Specification

1. Introduction
1.1 Purpose
1.2 scope
1.3 Definitions, Acronyms, and Abbreviations
1.4 References
1.5 Overview

2. General Description
2.1 Product Perspective
2.2 Product Functions
2.3 User Characteristics
2.4 Constraints
2.5 Assumptions and Dependencies

3.1 Functional Requirements
3. Specific Requirements

3.2.1 Functional Requirement <10.00>
3.2.2 Functional Requirement <20.00>

...

...
3.2.n Functional Requirement <n.OO>

3.2.1 User Interface Requirements
3.2.2 Hardware Interface Requirements
3.2.3 Software Interface Requirements
3.2.4 Communication Interfaces

3.2 External Interface Requirements

3.3 Performance Requirements
3.4 Design Constraints

3.4.1 Standards Compliance
3.4.2 Hardware Limitations

3.5.1 Security
3.5.2 Maintainability
3.5.3 Availability
3.5.4 Transferability and Conversion

3.6.1 Data Base
3.6.2 Operations
3.6.3 Site Adaptation

3.5 Attributes

3.6 Miscellaneous Requirements

Appendix 1: Glossary
Appendix 2: References
Appendix 3: Numbered List of Requirements

4.6 Software Design Description (SDD)

4.6.1 Description
A Software Design Description contains the complete design for a major software component. Typically it
describes that component in terms of the underlying software modules and lower level units. A SDD may
also reference detailed design information that is maintained on electronic media. Multiple SDDs may be
created.

4.6.1.1 Abstract
The purpose of a Software Design Description is to describe how program components are to be structured
to meet the requirements specified by the Software Requirements Specification. It is the link between
requirements and source code implementation. The SDD maps every requirement into one or more entities
in the implementation. In this way the SDD shows how the requirements will be met. It may also be used
to explain why certain design decisions were made. Typically the SDD employs both text and graphics to
convey design information.

Two levels of design description documents are commonly written. These levels are often referred to as a
top-level preliminary design and a low-level detailed design. The top-level design provides a description
of the system as a whole and its major functional components and interfaces (data and control). The low-
level detailed design includes specifications of individual functional components or objects. The detailed
design is developed such that the implementation may proceed directly to source code with little additional
analysis. Detailed design information can include program design language representations, a cross-
reference of function calls, a listing of all global data in the program, which functions access global data,
and definitions of user-defined data types. The Software Design Description can evolve to include both
top-level and low-level design information, perhaps physically separated into two distinct documents.

4.6.1.2 Audience
The Software Design Description is intended primarily for the following three audiences:

Software Development Personnel - software designers and quality assurance personnel will be
able to trace software requirements to software design and implementation at the component level;
software engineers (developers) will have specific knowledge of interfaces, functions, and
inputs/outputs expected from each of the software components prior to actually writing software
code;
Software Test Personnel - software testers may use the design information to aid in the
development of test cases; and
Software Maintenance Personnel - Software maintainers may use the SDD to understand
specific operations of the system.

In addition, the software design may be reviewed with the external customer. The SDD is a supporting
document for the design review but is not usually reviewed directly with the customer. Software project
management may find it useful to reference the SDD for more detailed information on the activities
necessary to implement the software requirements. This information could permit better planning for
allocation of time and resources to complete the software development task.

4.6.1.3 Development, Review, and Approval Responsibilities
The Software Design Description is derived from the requirements specification by the software design
team. It is reviewed or inspected using the requirements specification as the basis against which it is
verified. Systems engineers who are not directly familiar with the software design may also review the
SDD. Such a review can further ensure that the SDD does not contain incorrect assumptions about how the
software will support the system mission. The SDD may be formally reviewed with program management
and the customer at a preliminary design review and at a critical design review during the appropriate

54

.-

stages of the design. The software project leader, key software design personnel, and a software quality
assurance representative complete sign-off of the SDD after final review/inspection. When sign-off is
complete the SDD is placed under configuration management control in accordance the Software
Configuration Management Plan.

4.6.1.4 Content Guidelines
The level of detail included in the Software Design Description may vary according to the needs of the
project and the stage of design development for individual modules. The modules for which only an initial
preliminary design has been developed may only be documented in terms such as purpose and function.
Later efforts in preliminary design may result in decomposition of such a module into lower level units and
the documentation expanded to include additional top-level design information such as identification of
subordinate units, dependencies and interfaces, and processing requirements. The detailed design may be
documented in program design language or pseudo code. This level of detail will allow for direct
transformation of the detailed design into programming language statements.

4.6.1.5 Maintenance
Typically the Software Design Description is placed under informal configuration management prior to a
preliminary design review or inspection. The principal object of such control is to ensure that the design
elements being reviewed or inspected are the latest version that have been developed. After completion of a
detailed/critical design review or inspection, the SDD may be brought under more formal configuration
control or it may be kept under informal control. The principal difference in these two levels of control is
the formality involved in the analysis and approval of changes to the design during coding, module
integration, and testing. In either control case, the software design team is responsible for seeing that the
final version of the SDD accurately reflects the computer programs at the completion of formal software
test efforts. If the Software Development Plan calls for a Physical Configuration Audit, one objective of that
audit is to ascertain that the latest version of the SDD accurately describes the as-built product.

4.6.1.6 Other Alternatives and Issues
The specific design representation form and associated documentation should be closely aligned with the
design process used by the developers. The level of detail in the Software Design Description should be
necessary and sufficient for the developers to construct software source code. It should be a goal to make
the design representation as simple and informative as possible, not as complex and detailed as possible.
An SDD, or equivalent, is required by reference [EP401045] for War Reserve software projects.

4.6.2 Template Outline
An outline of a Software Design Description, based on reference [PPSD], is illustrated in Table 4-6. This
outline is based on a tailoring of the design description described in reference [IEEE1016]. This outline is
primarily suited to documenting the results of a structured design process. Since the design representation
documentation is so closely aligned with the design process, there are other outline forms that may be more
appropriate for other design processes.

1. Introduction
1.1 Purpose
1.2 scope
1.3 Definitions, Acronyms, and Abbreviations
1.4 References
1.5 Overview

2. Design Rationale
3. Design Description

3.1 Module Decomposition
3.1.1 Module 1 Description

3.1.1.1 Purpose
3.1.1.2 Function
3.1.1.3 Subordmates
3.1.1.4 Dependencies
3.1.1 .5 Resources
3.1.1.6 External Interfaces
3.1.1.7 Processing
3.1.1.8 Internal Interfaces
3.1.1.9 Data

3.1.2 Module 2 Description

3.1 .n Module n Description
... I ...

3.2 Data Decomposition
3.2.1 Data Entity 1 Description

3.2.1.1 Purpose
3.2.1.2 Subordinates
3.2.1.3 Dependencies
3.2.1.4 Resources
3.2.1.5 DataEntity 1 Detail

3.2.2 Data Entity 2 Description
...
...

3.2.m Data Entity m Description
...
...

4. Unit Testing Strategy
Appendix 1: Glossary
Appendix 2: References
Appendix 3: Data Dictionary
Appendix 4: Matrices of Numbered Requirements vs. Design

Entities

56

4.7 Software System Test Plan (SSTP)

4.7.1 Description
Formal software test documentation is necessary for all but extremely small, non-critical, and non-complex
software programs. Such documentation is captured in a Software System Test Plan and normally
addresses an approach for carrying out the testing, descriptions of the tests to be conducted, expected
results of the tests, and actual results of the tests.

4.7.1.1 Abstract
The Software System Test Plan provides details of activities required to prepare for and conduct system
tests, defines sources of the information used to prepare the plan, describes tests to be conducted and results
expected from each test, defines the test tools and environments needed to conduct the tests, and includes
the test results in an appendix.

4.7.1.2 Audience
The Software System Test Plan is intended primarily for the following five audiences:

Software Project Management - provides a roadmap for testing the system; this roadmap
enables program management to ensure that all system requirements are adequately tested:
Software Development Personnel - provides insight into the tests to be conducted and the
accepureject criteria that will be applied for each test:
Software Test Personnel - provides a specific plan, including test data, test environment, test
procedures, and expected results and accepVreject criteria for each test; every requirement
specified in the SRS is subjected to one or more tests or validations:

0 Software Maintenance Personnel - provides a starting point for testing changes and
enhancements to the software during its operational life cycle: and
Software Quality Assurance Personnel - provides a basis for validation that the programs satisfy
each and every requirement in the SRS.

4.7.1.3 Development, Review, and Approval Responsibilities
Normally the SSTP is written by those who will perform the formal validation of the software. Depending
upon the project, the testers may be a separate group, possibly even a different organization, or they may be
the actual software developers. On small software projects, the software developers are often the software
testers. The SSTP should be reviewed/inspected by software developers and testers. The project leader, test
leader, and quality assurance personnel complete sign-off of the SSTP after final review/inspection. When
sign-off is complete, the SSTP is placed under configuration management control in accordance with the
Software Configuration Management Plan.

4.7.1.4 Content Guidelines
The content of the Software System Test Plan is derived from the SRS and tests are designed to verify that
each requirement is satisfied. The requirements must be traceable, by identification/paragraph number in
the SRS, to one or more program components, and to one or more test cases. This traceability should be
captured first as a "Numbered List of Requirements" appendix in the SRS. The contents of that matrix
should be traceable to the "Matrices of Numbered Requirements versus Design Entities" appendix in the
SDD. The contents of those matrices should be traceable to one or more test identifier sections and to
elements in the "Matrix of Numbered Requirements versus Test Identifiers" appendix in the SSTP.

The SSTP also needs to identify the testing strategy (for example, tools, techniques, metrics, and completion
criteria) for each test as well as the test environment for hardware and software, test data, communications
needs, security, and other factors that may affect a successful test. The SSTP should describe in detail the
testing procedures, test data, and expected results and/or accept/reject criteria for each test case. The SSTP

57

should also provide guidance on how to document (usually through a test log) and report the test results. It
is possible that some software requirements are not testable in the given environment. These cases also
need to be identified and explained in the SSTP.

4.7.1.5 Maintenance
The SSTP is maintained by software project management within the guidance provided by the Software
Configuration Management Plan. All changes in software test activities should be incorporated into a
configuration controlled SSTP.

4.7.1.6 Other Alternatives and Issues
In some situations, it may be useful to separate the plans, test case descriptions, and test results into three
physically separate documents. For small projects, the Software System Test Plan information may be
included in the System Test Plan. An SSTP, or equivalent, is required by reference [EP401045] for War
Reserve software projects.

4.7.2 Template Outline
An outline of a Software System Test Plan, based on reference [PPSD], is illustrated in Table 4-7. This
outline is based on a tailoring of the test documentation described in reference [IEEE829].

Table 4-7. Software System Test Plan

1. Introduction
1.1 purpose
1.2 scope
1.3 Definitions, Acronyms, and Abbreviations
1.4 References
1.5 Overview

2.1 Requirements
2.2 Internal Interactions and Dependencies
2.3 External Interactions and Dependencies

2. Interactions and Dependencies

3. Requirements Not Tested
4. Testing Strategy
5 . Test Environment

5.1 Hardware
5.2 Software

5.2.1 Communications
5.2.2 System
5.2.3 Usage Mode

5.3 security
5.4 Tools
5.5 Documentation
5.6 Environment Usage

6.1 Test Identifier <1>
6.2 Test Identifier c2>
6.n Test Identifier a >

6. Test Descriptions

Appendix 1: Glossary
Appendix 2: References
Appendix 3: Matrix of Numbered Requirements vs Test Identifiers
Annendix 4: Test Results

58

4.8 Software Supporthlaintenance Plan (SSMP)

4.8.1 Description
The Software Support/Maintenance Plan provides a description of information useful to software
maintainers once the software has been released and accepted. A significant aspect of this plan is to
identify the process required to change and/or reproduce the software product. .
4.8.1.1 Abstract
The Software Support/Maintenance Plan (SSMP) provides guidance on how to support specific software
products that are covered by the plan. The SSMP documents software version identification information,
build or regeneration procedures for compiling and linking the software from source libraries, regression
testing methods, acceptance procedures, and maintenance procedures that might be useful to the support
organization responsible for incorporating changes to the software in the future. The SSMP may also
contain program-unique software delivery and installation and/or removal instructions if these are not
addressed in other project documentation.

4.8.1.2 Audience
The Software Supporthlaintenance Plan is intended primarily for the following four audiences:

Software Development Personnel - provides information on the operational and support
environments for which the software is designed to operate and be maintained;
Software Configuration Management Personnel - provides information on generation of the
software from source program files:
Software Maintenance Personnel - provides information about changing software products
during software maintenance activities; and
External Customers - defines the support facilities and maintenance training that will be required
to maintain the software.

0

4.8.1.3 Development, Review, and Approval Responsibilities
Software project management is responsible for allocating resources to develop and maintain the Software
Support/Maintenance Plan. The software development team is responsible for developing the SSMP. If
the supporting organization and the using organization are not the same, coordination between these two
entities is essential to the development of an acceptable SSMP. Upon acceptance by the developing,
supporting, and using organizations the SSMP is approved by the software project manager. During
development, the SSMP is updated and maintained by the software development organization in
accordance with the Software Configuration Management Plan. During support, the SSMP is updated and
maintained by the software support organization using software configuration management processes for
acceptance and approval of plan changes in accordance with the support organization's Software
Configuration Management Plan (which may be the same plan as used by the development organization).

4.8.1.4 Content Guidelines
The Software Supporthlaintenance Plan summarizes resource, support agreements, and environmental
assumptions into a single document providing software maintenance engineers with an important source for
maintenance information. Software maintenance includes life cycle phases similar to development but has
a significantly larger emphasis on the change processing activities, such as problem reporting and change
analysis, and regression testing to verify change implementation. The maintenance task originates with an
approved request for service and terminates upon acceptance by the customer.

4.8.1.5 Maintenance
The SSMP is updated, reviewed, and approved as major changes are introduced to the plan. Changes are
made in accordance with the software configuration procedures defined for development and support.
Changes in resource allocation, product size, product type, and the operating environment should be
reflected in the plan as soon as possible.

4.8.1.6 Other Alternatives and Issues
The SSMP information may be included with other software support documentation such as operator
manuals or user’s guides or, for small projects, may be included with the Software Development Plan.

4.8.2 Template Outline
An outline of a Software Supporthfaintenance Plan, based on the Software Transition Plan in reference
[IEEE1498], is illustrated in Table 4-8.

Table 4-8. Software SupportlMaintenance Plan

1 . Introduction
1.1 Identification
1.2 System Overview
1.3 Document Overview
1.4 Relationship to Other Plans

2. References
3. Software Support Resources

3.1 Facilities
3.2 Hardware
3.3 Software
3.4 Other Documentation
3.5 Personnel
3.6 Other Resources
3.7 Interrelationship of Components

4. Recommended Procedures
4.1 Software Modification
4.2 Software Regression Testing
4.3 Software Generation
4.4 Software Quality Evaluation
4.5 Corrective Action System
4.6 Configuration Management

5. Training
6. Anticipated Areas of Change
7. Transition Planning
8. Notes
Appendices

60

4.9 Software Safety/Security Plan (SSP)

4.9.1 Description
The Software Safety/Security Plan is concerned with documenting methods and techniques that will be
used to ensure that software does not fail in a way that contributes to the unsafe operation (e.g., results in
personnel injury or loss of life) of the system or unauthorized access to protected resources (e.g., classified
or proprietary material). Software requires special attention whenever it controls safety- or murity-related
functions or provides a backup function for safety or security features that are primarily implemented in
hardware. An SSP can be used to provide a plan for ensuring that safety, security, or safety and security
requirements are met.

4.9.1.1 Abstract
A Software Safety/Software Security Plan contains information relative to management of safety risks and
security vulnerabilities during the design and implementatiodmaintenance of computer programs for
critical systems. Technical efforts involve identification and analysis of potential problems, analysis of
alternative solutions, implementation of the selected alternatives, and analysis of these implementations
with respect to validity, completeness, and accuracy.

4.9.1.2 Audience
The Software Safety and Software Security Plans are intended primarily for the following eight audiences:

System Project Management - provides this level of management with insight into the safety and
security efforts that are to be carried out during the project:
Software Project Management - provides plans by which safety- and security-related software
efforts can be implemented and tracked by software managers:
System and Software Safety/Security Personnel - provides plans by which safety- and security-
related software efforts can be implemented and tracked:
Software Development Personnel - software designers and programmers need an understanding
of the safety and security activities to be carried out: safety and security requirements must be
implemented by software designers and programmers:
Software Test Personnel - provides test personnel with an understanding of the high level of
reliability required in the execution and analysis of safety and security features: testing must be
appropriately planned to complement planned safety- and security-related analyses activity;
Software Quality Assurance Personnel - provides a basis for auditing compliance to the safety
and security plan requirements:
Software Configuration Management Personnel - provides an understanding of the criticality of
configuration efforts related to safety- and security-critical software components: and
External Customers - provides clarification concerning software safety and security standards
that are to be enforced by the development organization.

4.9.1.3 Development, Review, and Approval Responsibilities
Not all software projects need a Software Safety/Security Plan. The need for such a plan should be
determined by project management and the external customer. When such a plan is required, it is the
responsibility of project management assisted by safety/security and software management personnel. The
system project leader, customer representative, security/safety managers, and software quality assurance
personnel should sign the SSP after a final review/inspection and recommended changes have been
implemented. Once the sign-off is complete, the SSP should be placed under configuration management in
accordance with the controls defined for such documents in the Software Configuration Management Plan.

61

4.9.1.4 Content Guidelines
The goal of the Software Safety/Security Plan is to reduce the risk of negative safety or negative security
aspects being designed or programmed into critical software during development or maintenance activities.
Normally, the SSP will be developed within the context of system safety and security programs. Safety or
security becomes an issue when software is embedded/installed within a high consequence system. The
content, level of detail, and resources required by a safety/security plan are determined by the type and
level of risks associated with the software, the complexity of the software (and the system), and by external
forces such as the threat environment and contractual or regulatory requirements. An SSP might typically
address:

management of activities such as documentation and records, configuration management, quality
assurance, verification and validation, software reuse, and certification:
analysis activities during software development and maintenance; and
post-development activities such as user training, installation and startup, and maintenance.

0

0

4.9.1.5 Maintenance
The Software Safety/Software Security Plan requires updating if the management approach changes, new
or additional technical activities are identified, or if documentation requirements change due to contractual
or programmatic changes. The SSP may also require updating if changes are introduced to the system’s
threat environment, hardware, or the software.

4.9.1.6 Other Alternatives and Issues
A closely related concept to software security is Software Use Control. Classified software is protected
according to the rules and regulations pertaining to its classification level. In addition, unclassified
software may be subject to certain constraints such as export limitations or other release limitations based
on its sensitivity or proprietary nature. Of special consideration is software, whether classified or not, that
is used in nuclear weapons. This software, as well as the hardware that comprises the system, must be
included in a Use Control Security Theme for the nuclear weapon being developed. The Use Control
Security Theme is an independent document that may incorporate some aspects of a Software
Safety/Security Plan.

4.9.2 Template Outline
An outline of a Software Safety/Security Plan, based on reference [EEE1228], is illustrated in Table 4-9.

62

Table 4-9. Software Safety PlanlSoftware Security Plan

I.

1. Introduction
1.1 Purpose
1.2 scope
1.3 Application
1.4 Disclaimer

2. Definitions, Acronyms, and References
3. Software Safety/Security Management

3.1 Organization and Responsibilities
3.2 Resources
3.3 Staff Qualifications and Training
3.4 Software Life Cycle
3.5 Documentation Requirements
3.6 Software Safety/Security Program Records
3.7 Software Configuration Management Activities
3.8 Software Quality Assurance Activities
3.9 Software Verification and Validation Activities
3.10 Tool Support and Approval
3.1 1 Previously Developed or Purchased Software
3.12 Subcontract Management
3.13 Process Certification

4. Software Safety/Security Analysis
4.1 Software Safety/Secunty Analyses Preparation
4.2 Software Safety/Security Requirements Analysis
4.3 Software Safety/Security Design Analysis
4.4 Software Safety/Security Code Analysis
4.5 Software Safety/Security Test Analysis
4.6 Software Safety/Security Change Analysis

5. Post-Development
5.1 Training
5.2 Deployment

5.2.1 Installation
5.2.2 Startup and Transition
5.2.3 Operations Support

5.3 Monitoring
5.4 Maintenance
5.5 Retirement and Notification

6. Plan Approval
Appendices

4.10 Software Users Guide (SUG)

4.10.1 Description
The Software Users Guide describes how users of application software can produce desired results using
the software. The SUG provides the syntax, commands, key strokes, and pointing device operations
necessary to execute all options the software provides. The SUG should address the range of operator/user
knowledge and experience backgrounds appropriate for the software’s operational use.

4.10.1.1 Abstract
The format and content of a Software Users Guide depends upon the software application and the
operational use (modes) of the software. An SUG includes all information necessary for the user to operate
the software: data inputs, operational procedures, expected outputs, and error processing instructions.
Operational procedures may include installation, initialization, backup and recovery, as well as procedures
to be conducted to cause the software to perform its intended operational functions. Some of the
information for an SUG might be provided as an on-line capability and simply referenced by the SUG.
User interfaces such as display screen and keyboard interactions may be prototyped early in the software
project to facilitate customer acceptance of the interfaces and support the requirements gathering process.
The prototype may then evolve into information that is documented in an SUG.

4.10.1.2 Audience
When prepared early in the software development cycle, the Software Users Guide (or a prototype of the
user interface part of the SUG) may be used by the software developers to ensure the system works the way
it was advertised to the customer. The preparation of the SUG also provides the customer an opportunity
to understand and have input into how the system is intended to operate before the software is written. The
SUG is intended primarily for the following three audiences:

0

0

0

Software Development Personnel - provides insight into the design of user interfaces:
Software Maintenance Personnel - provides insight into the design of user interfaces, error
recovery and backup maintenance procedures, and the functional capabilities of the software: and
External Customer/Users - provides a source of information for initially learning how to use the
software and a ready reference for looking up features and operational information.

4.10.1.3 Development, Review, and Approval Responsibilities

The software development team is responsible, possibly with the help of outside technical writing
expertise, for producing the Software Users Guide. The customer is responsible for reviewing early views
of the user interface functions and formats as part of the software requirements gathering process. The
project leader, customer representative(s). and software quality personnel complete sign-off of the SUG
after final review/inspection. When sign-off is complete, the SUG is placed under configuration
management control in accordance with the Software Configuration Management Plan.

4.10.1.4 Content Guidelines
The Software User Guide provides a background of the system operation and a step-by-step walk through
of the system features and user operational procedures. For menu-driven systems, the document should
contain a menu-tree diagram. For graphic-user-interfaces (GUIs) it should show diagrams of the screen at
two levels. The first level should be a description of the basic components of the screen, such as tool and
menu bars. The second level shows screen configurations having data displayed on the screen to represent
the type of functions described in the associated text. The SUG must be able to address issues from the
novice to the expert user of the system. The ability to quickly find answers to questions requires both an
in-depth table of contents and a key word index. The SUG may reference on-line user documentation for
more specific details.

64

4.10.1.5 Maintenance
The Software Users Guide should be prepared electronically using a word processing system, hypertext
system, or on-line documenting tool. The maintenance of the SUG can then be upgraded as each phase in
the life cycle is revisited and changes are made. Changes to the SUG should be controlled through
development and support configuration management procedures.

4.10.1.6 Other Alternatives and Issues
The format and content of the Software Users Guide should be prepared to be usable and maintainable.
The SUG may be a combination of written document information, on-line information available to the user
during operational use, and electronic interface screens that graphically define the format, inputs, and
outputs that the user must understand.

4.10.2 Template Outline
An outline of a Software Users Guide, based on the Software Users Manual in reference [IEEE1498], is
illustrated in Table 4- 10.

Table 4-10. Software Users Guide

1. Introduction
1.1 Identification
1.2 System Overview
1.3 Document Overview
1.4 Relationship to Other Plans

2. References
3. Software Summary

3.1 Software Application
3.2 Software Inventory
3.3 Software Environment
3.4 Software Organization and Overview of Operation
3.5 Contingencies, Alternate States, Modes of Operation
3.6 Security and privacy Protection
3.7 Assistance and Problem Reporting

4. i First-Time User Of The Software
4.1.1 Equipment Familiarization
4.1.2 Access Control
4.1.3 Installation and Setup

4.2 Initiating a Session
4.3 Stopping and Suspending Work

5 . Processing Reference Guide
5.1 Capabilities
5.2 Conventions
5.3 Processing Procedures

5.4 Related Processing
5.5 Data Backup
5.6 Recovery From Errors, Malfunctions, and Emergencies
5.7 Messages
5.8 Quick-Reference Guide

4. Access To The Software

5.3.n (Aspect of Software Use)

6. Notes
Appendices

65

4.11 Software Verification and Validation Plan (SVVP)

4.11.1 Description
The Software Verification and Validation Plan describes the approach for carrying out the software tasks to
verify that the products from successive life cycle phases and activities are correct and validate that the
final software product satisfies the original operational intent as captured in system and software
requirements. Verification is the evaluation of a system or component to determine whether the products
of a given development phase satisfy the conditions imposed at the start of that phase. For example, one
verification activity might determine whether the content of a Software Design Description fully and
accurately addresses each of the requirements contained in the Software Requirements Specification.
Validation is the evaluation of a system or component during, or at the end of, a development process to
determine whether the documented requirements are satisfied. In short, verification answers the question
of whether the software is being developed correctly and validation answers the question of whether the
correct software has been developed.

4.11.1.1 Abstract
Verification and validation efforts are carried out by a team that is often independent of the software
development and software test teams. The Software Verification and Validation Plan is principally a set of
task descriptions that address verifying the results of each stage of software development and validating the
intermediate and end products against the requirements. Typically these tasks are initiated during concept
development of the system.

4.1 1.1.2 Audience
The Software Verification and Validation Plan is intended primarily for the following four audiences:

Software Project Management - project management will have a plan which defines the
software verification and validation processes, resources, and tools to be used for the project being
implemented: the plan also serves as a measure of progress during the software development
effort: there is additional assurance, assuming the plan is good and well executed, that the desired
product will meet customer requirements;
Software Development Personnel - all members of the software development team (software
designers, programmers, analysts, testers, and maintainers) benefit from the overall emphasis on
verifying and validating that software requirements are being met and that any defects are being
eliminated earlier in the development process; the plan may be used by these individuals to
understand how the software might be evaluated.
Software Verification and Validation Personnel - provides an overall plan for the verification
and validation efforts, and describes the tasks that are to be performed at each stage of the
software life cycle process; verification and validation personnel include all reviewers, inspectors,
and testers in the project.
External Customers - the SVVP provides customers a more refined estimate of how program
goals will be met and whether the program risks have been properly identified: the SVVP will
also provide customers with insight concerning the quality being built into the software product.

0

0

0

4.1 1.1.3 Development, Review, and Approval Responsibilities
The Software Verification and Validation Plan is the responsibility of the software manager, project leader,
and the verification and validation team. It is normally developed by the verification and validation team
in cooperation with the software manager and quality assurance personnel. The SVVP is normally signed
by the software project manager, unless the verification and validation activities are performed as an
independent activity. In this case the document may be signed by both the project manager and the
manager of the independent activity. Once the SVVP is reviewedinspected and the sign-off process
completed, the S V W should be placed under project configuration management control.

66

4.1 1.1.4 Content Guidelines
A Software Verification and Validation Plan is usually required for complex and critical software
development projects. This latter criteria may be safety or security related but could also be driven by risk
of financial loss or loss of reputation. An SVVP should be developed to complement other quality related
plans and activities such as safety, security, configuration management, and quality assurance. Each task
defined in the SVVP should contain information concerning resources needed to complete the task, risks
and assumptions relating to the task, and roles and responsibilities for completing the task.

The SVVP is written to fit the life cycle model being used to develop the software. The SVVP outline
provided uses the traditional waterfall model as a basis for discussion. The SVVP tasks each have entrance
and exit criteria that are predominately product engineering information in the form of requirements
specification, design descriptions, test designs and test plans. Therefore, the emphasis should be to model
the plan based on the predominant transitions from one major activity to another. For example, one
transition might be from design to implementation. At this transition, design information should be
reasonably complete to satisfy the entrance criteria for tasks associated with the verification of the design
activity. The completion of the tasks may sequentially address the design information of software
components in the order the components are completed.

4.1 1.1.5 Maintenance
The Software Verification and Validation Plan is normally initiated early in the development process but
must be able to be modified as development proceeds. Many factors change between concept development
and requirements analysis. The SVVP should be updated to be consistent with these changes. Like the
software requirements, however, the development approach, required tasks, and management issues should
stabilize and the SVVP should need less updating as development moves into design.

4.1 1.1.6 Other Alternatives and Issues
When a Software Verification and Validation Plan is required, it normally becomes a driving factor in the
development process. An SVVP is usually needed when, either by customer demand or because of the
critical nature of the software (and system), a warrant is required that all possible attention has been given
to the correct development of the software. It should also be recognized that a formal verification and
validation program does not come without considerable additional cost. A formal verification and
validation program requires a substantial documentation effort to successfully complete the tasks and
provide for reporting requirements.

It is useful to distinguish between an SVVP and an SQAP. Both plans have the intent of ensuring software
is developed with attention to quality. Perhaps the primary difference is in the scope of activity and
responsibilities. The SVVP is developed and implemented primarily by an independent organization,
perhaps one reporting to the customer. The SVVP typically covers a broader range of life cycle activities
and at greater depth than the SQAP. The SQAP is developed and implemented by a combination of
personnel who have quality and project-specific responsibilities. The quality personnel may be completely
independent or totally integrated with the project. The scope of activities is integrated with the software
development process.

Within the nuclear weapon development community, there exists a requirement to perform an engineering
qualification evaluation on the weapon system components, including the software. This requirement is
accomplished by the development and issuance of a Qualification Plan (QP) that specifies tasks and
analyses to be performed in the evaluation. The QP is reissued regularly with revised information
reflecting the progress of the evaluation. Upon completion of the evaluation, a Qualification Evaluation
Release (QER) is issued stating whether, and to what extent, the component can be used. The QP and QER
accomplish the spirit of what the SVVP is intended to do. When a QER has been issued on a software
component of a nuclear weapon stating that it is fi t for use in that system, then that software component has
successfully completed a verification of the development processes and has been validated as meeting the
requirements placed upon it.

67

4.11.2 Template Outline
An outline of a Software Verification and Validation Plan, based on reference [IEEE1012], is illustrated in
Table 4- 1 1.

Table 4-1 1. Software Verification and Validation Plan

1. Introduction
1.1 Identification
1.2 System Overview
1.3 Document Overview
1.4 Relationship to Other Plans

2. References
3. Definitions
4. Verification and Validation Overview

4.1 Organization
4.2 Master Schedule
4.3 Resources Summary
4.4 Responsibilities
4.5 Tools, Techniques, and Methodologies

5.1 Management
5.2 Concept Phase
5.3 Requirements Phase
5.4 Design Phase
5.5 Implementation Phase
5.6 Test Phase
5.7 Installation and Checkout Phase
5.8 Operation and Maintenance Phase
Software Verification and Validation Reporting
Verification and Validation Administrative Procedures
7.1 Anomaly Reporting and Resolution
7.2 Task Iteration Policy
7.3 Deviation Policy
7.4 Control Procedures
7.5 Standards, Practices, and Conventions

5. Life-Cycle Verification and Validation

6.
7

Appendices

68

5 Software Implementation Documentation
This chapter describes software source code standards and unit software documentation in more detail, and
provides information on using software development folders to organize and capture software
implementation documentation. A typical small, non-critical software project may have no
implementation documentation other than source code. For software development efforts that involve
several programmers or more critical applications, the necessity for additional and more formally
organized implementation documentation increases. Implementation documentation includes unit software
source code, unit software verification test documentation, and implementation standards and guidelines
such as coding standards or styles. The unit software source code may include application source code,
control language files, data files, and test software developed specifically to accomplish the unit software
verification tests.

5.1 Source Code Implementation Standards
Standards establish a common ground that enhances communication. Standards exist for many
programming languages. The syntax of a programming language is established so that a compiler or
interpreter can perform the tasks described by a software developer. This basic syntax is sufficient when it
is a computer program trying to read the task description. However, it is often desirable for a human being
to be able to read this description as well. Requirements and conventions placed on top of the basic syntax
of a programming language, in order to improve the readability for humans, are commonly referred to as
coding standards or style guidelines.

Source code needs to be readable in order to enhance supportability and reuse. In order for source code to
be easily supported or reused, it must be well documented and consistently written. By following coding
standards, developers are more likely to correctly implement the intended task or requirement in the
software. Even if the source code is not initially correct, by following coding standards it will be easier to
locate and eliminate software defects prior to delivery. See reference [K&P] for more on elements of
programming style and coding standards.

5.1.1 Source File Documentation
Coding standards often specify that certain information must be included in a header at the beginning of
every source code file. This information serves as a table of contents for the file. A person reading the
source file can immediately see the most pertinent information about the contents of the file. File headers
typically include the following information:

filename:
short statement of purpose:

change history.

list of functions, global variables, and data types defined:
list of dependencies for the file: and

In addition to file headers, each function in the file should have a header with certain information which is
pertinent to that function. Some ideas for what to include are:

function name:
short description:
names and types of parameters:
return value:
global variable usage:
other functions used;
file dependencies;
change history: and
special considerations. .-.

69

For uniformity, the coding standard should specify templates for these headers so that the software
developers can copy the format into their favorite source code editor.

5.1.2 Naming Conventions
Files, functions, variables, constants, and data types all need names. The more care with which these
names are assigned, the more readable the source code will be. In addition to a general rule requiring that
names be meaningful, the use of lower and upper case letters is often specified to distinguish between
variables, constants, and data types. For example, the coding standard may specify that variable names be
in lower case, constants in upper case, and data type names use title case.

hother useful standard is to require that all names visible outside of the file in which they are defined
have a part of the name that links to the file name. A prefix can be assigned to each file and then used as a
part of the function, global variable, constant, and data type names. The use of a prefix as part of global
names allows a person reading the code to more quickly identify where a particular name is defined.

5.1.3 Language Constructs
Most programming languages provide a rich set of constructs for specifying programs. Unfortunately, just
because the syntax of a language allows the programmer to write something a certain way doesn't mean it
should be written that way. Some constructs of the language may be easier to understand or less error
prone than others. For example, in languages that contain a "goto" construct, it is common for a coding
standard to discourage its use when another language construct is sufficient. Similarly, a "switch" or "case"
construct is usually considered better than a long string of nested "if-then-elses". By necessity, rules on the
use of language constructs will be very language specific. Consult style guides for the individual
languages to get ideas for what are considered good standards.

5.1.4 Style and Layout Guidelines
A programmer may use standard file and function headers, assign meaningful names, and avoid confusing
language constructs but the code could still be very difficult to understand. Just imagine a function that is
several hundred lines long, or worse, a function that is just as long but consists of a single line. Some
subjects which could be addressed in this section of a coding standard are:

use of white space;
use of comment lines;
function sizes;

indentation schemes.
use of global data versus parameter passing; and

5.1.5 Maintenance of Coding Standards
A coding standard, like any standard, should not be considered carved in stone. It should evolve as
experience is gained with the language and programming in general. A coding standard is a repository of
the pearls of wisdom that are acquired over time and a place to record these pearls so that they are not
forgotten. The organization responsible for development of software using particular source languages
should develop (or reference) coding standards for each language. If the coding standards are developed,
then changes to the coding standard should be controlled in a formal manner in accordance with
organization-level configuration management procedures.

5.2 Unit Development Documentation
This section describes a detailed approach to the documentation activities associated with unit software
development and testing. Usually, a unit is the lowest level of separately compilable software structure. It
may be a subroutine, module, function, procedure, or other such nomenclature depending on the computer
language in which the software is written. The following paragraphs describe the elements of unit

70

_-

documentation, and discuss the types of unit documentation that are most useful to other software
developers and software testers. This documentation should be captured in the unit's Software
Development Folder (see section 5.3).

5.2.1 Developing Unit Documentation of Known Quality
If the unit developer's job were just to produce source code for delivery, it would require only the following
work:

0 develop an understanding of what the execution of the unit is to have accomplished when it
returns from an invocation of each specified entry point;

0 design internal data structures and algorithms (sequential procedures, knowledge frames, or rule
bases) to implement the functions for the specified entry points; and
encode these understandings in a specified compilation or scripting language.

Of course, most developers also do some testing, so when they pass their units to their customers, they feel
it will work. In fact, most unit developers have other developers and the system testers as their customers.
Consequently, the criterion for a good job in unit development documentation is that those other
developers and testers can readily use the units produced by a developer. Documented units and the
delivery of unit documentation to other developers and system testers is among the cheapest and the most
valuable parts of the unit development job. The bullet list below is a suggested task list for a unit
developer integrated with the suggested unit documentation, including test documentation. This list
provides some perspective for how unit documentation is used within the unit development and test
process.

0

develop and record the catalog of unit actions;
develop and record the unit software design and testing objectives:
record a test design for test software and test cases that will achieve the testing objectives:
record a code design for the unit software that will implement the catalog of unit actions;
prepare test cases and test software for testing the unit:
encode the unit software:
build a test that is executable from the test software and the unit software and then execute the
associated test cases: and
evaluate the test results for correctness; evaluate the test execution trace for coverage; locate and
correct defects in the unit software and test software.

Corresponding to the two kinds of unit customers, developers and system testers, the associated unit
documentation is summarized in the following two subsections.

5.2.2 Unit Documentation for Developers
Unit development should produce a catalog of unit actions, code design, and unit software that will be
needed at a later time by any other developer (including the unit's developer) for understanding and reusing
or modifying the unit.

Catalog of Unit Actions
The catalog of unit actions records the understanding of what the execution of the unit is to accomplish
when it has returned from an invocation of each specified entry point of the unit. Usually, each entry point
has several distinct actions associated with it. There is, of course, the intended action performed by the
unit when the entry point is called at the right time with valid inputs and sufficient resources. In addition,
there are often numerous other actions to be accounted for: for example, the action performed in response
to calling the entry point:

at the wrong time (the unit is in the wrong state);
with invalid input data values;
with input data which does not satisfy particular relationships; and

71

0 when there are insufficient resources for its job.

A good programmer usually accounts for these situations, but in many programming teams that
programmer is (unfortunately) the only person who knows just what actions are performed. For each entry
point, the catalog of unit actions should list all the distinct actions, giving for each:

a unique label which enables reference to the action:
a list of unit states in which it is allowed to occur ;
a list of the inputs expected (names, types, interpretations) and their valid domains;
a list of input relationships expected and the conditions which make them valid:
a list of needed resources and their sufficiency (often seen as a success or fail response from a
resource management utility, e.g., a dynamic memory allocator or a communication link): and
a definition of unit response in terms of the outputs produced (names, types, interpretations) and
the resulting unit state, if different than the initial state in which the action starts.

The catalog of unit actions is evidently not redundant with a software system's design documentation. In
most cases, system designs are not refined this well before unit development is assigned.

Unit Software Design
A useful unit software code design gives other developers hints about internal data structures, algorithms
(sequential procedures, knowledge frames, or rule bases) which are used to implement the functions for
each specified entry point, and packaging (identifying internal functions/procedures in the unit and
references to external units and libraries).

For data structures, document the computational or control role it performs, when and why it is set, and
what its values represent. For algorithms, document any recursion (especially termination and error
recovery), any numerical errors of truncation or approximation, and control of error propagation. For
packaging, document subordinate units, internal subordinates having no external visibility, and allocation
of responsibilities among the unit and its subordinates.

Designing unit software without thinking in advance about how the unit will be tested may lead to code
that is difficult to test. Generally, don't design what can't be tested and don't code what can't be tested.
More specific guidelines for design testability include the following:

0

0

0

0

0

0

0

package data and code structures into logical units:
j encapsulate data structures to control scope and visibility
3 localize and standardize data accesses, data validation, and constraint enforcement
j add entry points with get and set functions for data and action states
3 alias data and code structures with reference names

localize and protect critical sections
maximize cohesion, minimize coupling

enforce required function call sequences by constructing a finite state machine implementation of
the valid sequences:
implement error detection, notification, response, and recovery behavior;
j validate inputs
j validate outputs
3 arrange for continued execution after failures during testing
include functions to reset states and display internal data structures:
parameterize capability and resource limits;
allow a disconnect from external hardware if possible (e.g., by redirecting memory-mapped I/O
from external device to local RAM);
use design inspections: and
use classical software architectures.
layers Pipes remote procedure calls
hierarchies transactions abstract data types
callbacks blackboards object messaging

72

I

A useful design validation technique is to provide a high level description of the mechanism which
performs each action in the catalog of unit actions. Such a description indicates the sequence of
calculations and transformations occuning in the internal data structures when the entry point is invoked
under the specified conditions. It includes resource usage (time, memory, communications) and sequence
of references to both internal and external subordinate units.

Unit Software Code
The encoding of the mechanisms from the code design into a specified compilation or scripting language
produces unit software files. Often these files are supplemented with other files of data and function
declarations, unit configuration parameters, and compilation instructions (notes or configuration and build
files for automatic compilation). Variations and extensions of those files may be further defined through a
variety of standard editing facilities in the compilers or interpreters which process those files (e.g.,
conditional compilation, pragmas and code generation modifiers). The preceding section 5.1 on Coding
Standards addresses the documentation of the unit software code files.

5.2.3 Unit Documentation for Testers
Unit development should produce a variety of documentation for any tester including a developer who is
modifying or reusing the unit and needs regression tests. This documentation should address what
behaviors and properties of the unit software were tested at the unit level and how they were tested. This
documentation should include testing objectives, test design, test software, test cases, and test results.
These documentation elements are summarized in the paragraphs below.

Testing Objectives
The testing objectives list of all the operational things about the unit to be shown by unit testing. This list
consists of selected information from the catalog of unit actions and information derived from code design.
At the unit level, the testing objectives should include every action listed in the catalog of unit actions. In
addition, the following kinds of things should also be shown:

the correct actions are performed at each of the boundaries of each input data domain;
the correct action is performed for input data meeting preconditions and failing to meet
preconditions; preconditions include validity or invalidity of individual input data and satisfaction
or violation of input data interrelationships:
the correct action is performed for each possible combination of independent preconditions in a
decision table or decision tree for action selection;
the correct action is performed for each possible failure in the unit’s environment (e.g., device
time-out, insufficient resource, or missing or corrupt file) and any special combinations of failures
demanding unique response;
actions are performed in all sequences which cause all allowed transitions between all allowed
unit states: all actions are executed in each unit state allowing them;
every code segment, every conditional branch, every multi-way switch are executed, and (when
appropriate) every loop is executed zero. one, and two times: and
paths forcing all variable def-use pairs are executed; a def-use pair is a statement assigning a
value to a variable followed by statements later in the path which use the value from that
assignment statement.

All test objectives except the last two are called functional (or behavioral) testing objectives.
Accomplishing all functional testing objectives provides assurance that the unit does what it should when it
should. The code flow and data flow objectives are called structural testing objectives. Accomplishing
the structural testing objectives provides assurance that there isn’t untested or unexpected functionality in
the unit.

Other aspects of the unit may provide testing objectives. For example, developers may understand likely
errors which other developers may make in using a unit as a subordinate capability to their units. In that
case, the code design and testing objectives may include either structural or execution checks for those

73

kinds of unit misuse by another developer. Simple examples of misuse include a caller providing an
invalid address at which the unit is to place output and a caller failing to call a unit initialization function
before using one of its functions.

Test Design
Distinguished from the testing objectives which contain a selection and specification of things to be shown
by unit testing, is the test design which indicates what kind of test cases will be used to show that the unit
software correctly implements each of the objectives. Every functional testing objective is explicitly tied
to one of the unit's actions. Therefore, designing test cases for a particular functional testing objective
results in test cases which are explicitly traceable to the unit's requirements in the catalog of unit actions.

The unit testing approach in test design is documented as a record of five classes of decisions:

0

0

0

0

0

what samples and combinations of input data will be used in test cases;
what initial situations (unit states, resources) will be used in test cases;
in what sequences test will be administered;
how test cases will be documented; and
how tests will be executed.

Test Software
The term test software is just a collective name for driver and stub code. A driver is code that sets up unit
input data in executable form and invokes entry points to execute the test. From the unit's perspective, a
driver is a surrogate for all other units that may invoke entry points in the unit under test. A unit test driver
can be largely standardized so the individual developer has very small amount of extra work in adapting it
to any particular unit. A stub is simple code that has the same invocation interface as a real subordinate for
receiving and returning calls or messages from the unit. Of course, real subordinates may also be used as
long as they have already been tested and shown to execute properly. The documentation should clearly
describe the test execution environment architecture of driver and stubs for the unit under test as illustrated
in Figure 5-1.

interactive Control

Instrumente
Code

Figure 5-1. Framework for Test Software

74

Test Cases

"-

Test cases are identified when test design decisions have been applied to one or more testing objectives for
a particular action of a particular entry point. Each test case has particular values specified for each input
variable and an initial situation specified in terms of the unit's state (if any) and resource supply (if
needed). A test case is completed when the catalog of unit actions has been used to determine the expected
outcome of the test execution, giving expected values for each output variable and a specification of the
final situation in terms of unit state and resources.

When the actual test cases are devised according to the test design, they should be recorded in some form.
Ideally, this form would be some kind of executable script file which could be used directly in test
execution. A combination of comments and data in an executable script form is suggested. Whether the
test case documentation is recorded for human or machine administration, it should provide the following
information:

a unique test case identifier:
a reference to the particular action and entry point being executed;
any required setup of the unit into a particular state (an appropriate sequencing of test cases is
usually used to achieve this):
the purpose of the test's input sample combinations in terms of subdomain body or boundary being
probed, structure size or structure alternative being probed, array or table characteristic being
probed, or data relationship being violated;
a list of names and values of the input data:
the particular precondition being satisfied or violated;
the method of causing unit execution of the test;
the method of determining end of unit execution:
a list of names and expected values of the output data;
the particular postcondition expected to be satisfied; and
any state transition expected to a different unit state:

Test Results
A test occurs when a test case, administered through the test software, is executed by the unit software,
resulting in an outcome. The test results are the actual output data values and, when appropriate, the
resulting unit state and resource situation. Since a test case may be executed multiple times, there can be
multiple test results for a particular test case. Labeling test results would require:

the unique identifier for the test case which was executed:
an identification of the unit software version which executed the test:
an identification of the test software version which administered the test; and
a time stamp for the particular execution of the test case.

The test results may or may not be the same as the expected results documented in the test case. If they are
the same, to within some tolerance, the test case is marked passed. Otherwise it is marked failed. It is
common at the unit development level not to regard the development task as complete until all the test
cases have passed. Therefore, such detailed labeling and marking of test cases is unnecessary, except for
knowing which test case produced which results. The test results are simply saved in their observable
form. The unit software, the test software, and the test results are all consistent and can be labeled with the
unit's configuration component identifier.

5.3 Software Development Folders
This section describes the format and content of a Software Development Folders (SDF), also called a
Software Development File, Software Development Notebook, or Unit Development Folder. A Software
Development Folder is a collection of material pertinent to the development of a given software unit or set
of related units. Contents typically include the requirements, design, technical reports, code listing, test
plans, test results, problem reports, schedules, and notes for the units [IEEE610].

75

The Software Development Folders are started in skeletal form at the start of each program unit and
become an important organizational tool for implementation documentation during software development.
The SDFs provide management with a mechanism for monitoring individual software unit implementation
progress. The SDFs provide software maintainers with invaluable insight into the design and
implementation of software units when changes to the units are required. Content requirements for project
SDFs should be specified in the Software Development Plan and controlled in accordance with the
Software Configuration Management Plan. Some times SDFs are only used for internal project unit
management and are not delivered to the customer. Other times SDFs are more formally controlled as a
customer deliverable.

The SDFs have been historically composed of code documentation on hard copy and executable code on
machine-readable media but the trend today encourages increased use of automated tools to support the
creation and maintenance of SDFs. The SDFs should be managed in accordance with the scope of the
project, the tools available, and the budget. General content of the SDF is illustrated in Figure 5-2.

Purpose: Record software development activites associated with a program unit.
Provide basis for final as-built documentation

Contents
Identification of unit
Schedule and activity log
Requirements applicable to unit
Updated operating instructions
Assembled source listings
Infmation/files required to submit

unit to configuration control
Unit test plan/procedure
Unit test results
Comments from reviews of unit
Pertinent design notes and memoranda
Version description log
Programmer miscellaneous notes

Internal Design Reviews

Documents
Interface Control Document(s)

Figure 5-2. Software Development Folder Content

The number and kind of SDFs will vary from project to project according to variations in the access rights
and needs of the developers, which are directly related to the levels of control as outlined in the SCMP.
The insertion of entities and changes to entities in a controlled SDF should produce an auditable
authorization trail. The names of SDFs may vary, but fundamentally three kinds should be considered.

76

5.3.1 Programmer's SDF
This folder is used for holding newly created or modified software entities (units/modules or data files and
associated documentation). This SDF is used by programmers in developing code. It is freely accessible
to the programmers responsible for that unit at any time. It is the programmers' workspace and controlled
by the programmers.

5.3.2 Controlled SDF
The Software Development Folder is used for managing the current baseline(s) and for controlling changes
made to them. This folder documents units and components of a configuration item that have been
promoted for integration. Entry is controlled, usually after verification. Copies may be freely made for
use by programmers and others. Changes to units or components in this folder must be authorized by the
responsible authority, which could be a configuration control board or other body with delegated authority.

5.3.3 Archived SDF
Sometimes called the software repository, this folder is used as an archive of various baselines released for
general use. This folder contains the master copies plus authorized copies of computer program
configuration items that have been released for operational use. Copies of these masters may be made
available to requesting organizations.

Software libraries and SDFs are used as tools to manage the configuration evolution of the software
development baselines such that changes are made in a systematic, controlled way and that the
configuration is not inadvertently corrupted. This ensures that the status of the software is well-understood
at all times and that changes have not been made without having gone through a process of review,
approval, and authorization for implementation, producing an audit trail. Libraries and SDFs can also
serve as a means to control access to software components, with standard procedures to be followed and
checks made via passwords or authorization lists to be able to successfully modify them. Thus, a certain
amount of safety and protection (against loss or deletion, accidental or intentional) is afforded in a
convenient way to software components through effective use of SDFs and a library structure.

77

Blank Page

78

.

Appendix A: References and Bibliography
[ANS 10.41

[ARNOLD]

IBROCKMANI

[DOD2167A]

[DOD2 1681

[DOE 1330.1 D]

[DOE1360.1A]

[DOE1360.2A]

[DOE1360.3A]

[DOE1360.48]

[DOE5637.1]

[DOE5700.6C]

[DPMMJ

[EP40 10401

lEP4010451

[HUMPH901

[IEEEstds]

[IEEEfjlO]

[IEEE730]

"Guidelines for the Verification and Validation of Scientific and Engineering Computer
Programs for the Nuclear Industry," American Nuclear Society, 1987.

Arnold, R., Software Reengineerinq, IEEE Computer Society, March 1993.

Brockman, J., Writing Bette r Commter User Docu mentation. From Paper to Hyperte xt,
John Wiley & Sons, Inc, 1990.

DOD-STD-2167A, "Defense System Software Development," Department of Defense,
February 29,1988.

DOD-STD-2168, "Defense System Software Quality Program," Department of Defense,
April 29,1988. Documentation Data Item Description is:
DI-QCIC-80572 Software Quality Program Evaluation Plan

"Computer Software Management," DOE Order 1330.1D, May 18,1992.

"Acquisition and Management of Computing Resources," DOE Order 1360.1A, May 30,
1986.

"Unclassified Computer Security Program," DOE Order 1360.2A, May 20, 1988.

"Automatic Data Processing Standards," DOE Order 1360.3A, July 11, 1983.

"Scientific and Technical Computer Software," DOE Order 1360.4B, December 31, 1991.

"Classified Computer Security Program," DOE Order 5637.1, January 29, 1988.

"Quality Assurance," DOE Order 5700.6C, August 21, 1991.

Cook, C., and Visconti, M., "Documentation is Important," Software Technology Support
Center, CrossTalk, November 1994.

"Drawing System," Interagency Engineering Procedure, January 15, 1992.

"Definition of Computer Software Configuration Items," Interagency Engineering
Procedure, December 1, 1992.

Fagan, M., "Advances in Software Inspections," E E E Transactions on Software
Engineering, Vol. SE-12, No. 7, July 1986, pp 744-751.

Humphrey, W., Managing the Software Process, Addison-Wesley, Reading MA, 1990.

IEEE Software Engineering Standards Collection: 1994 Edition, Wiley-Interscience, New
York, NY, 1994.

IEEE Std 610.12-1990, "IEEE Standard Glossary of Software Engineering Terminology
(ANSI)," IEEE Software Engineering Standards, IEEE Service Center, Piscataway, NJ.

IEEE Std 730.1-1989, "IEEE Standard for Software Quality Assurance Plans," IEEE
Software Engineering Standards, IEEE Service Center, Piscataway, NJ.

A- 1

[IEEE8 281

[IEEE829]

[IEEE8 301

[EEE990]

[IEEEl 0 1 21

[IEEElO 161

IEEE10421

EEE10581

IEEE10631

[EEE1074]

[IEEE1209]

[IEEE12 191

[IEEE1228]

[IEEE1348]

[IEEE14981

[IS065921

IEEE Std 828-1990, "IEEE Standard for Software Configuration Management," IEEE
Software Engineering Standards, IEEE Service Center, Piscataway, NJ.

IEEE Std 829-1983, "IEEE Standard for Software Test Documentation," IEEE Software
Engineering Standards, IEEE Service Center, Piscataway, NJ.

IEEE Std 830-1993, "IEEE Guide for Software Requirements Specifications," IEEE
Software Engineering Standards, IEEE Service Center, Piscataway, NJ.

IEEE Std 990-1987, "IEEE Recommended Practice for Ada As a Program Design
Language," IEEE Software Engineering Standards, IEEE Service Center, Piscataway, NJ.

IEEE Std 1012-1986, "IEEE Standard for Software Verification and Validation Plans,"
IEEE Software Engineering Standards, IEEE Service Center, Piscataway, NJ.

IEEE Std 1016-1987, "IEEE Recommended Practice for Software Design Descriptions,"
IEEE Software Engineering Standards, IEEE Service Center, Piscataway, NJ.

IEEE Std 1042-1987, "IEEE Guide to Software Configuration Management," IEEE
Software Engineering Standards, IEEE Service Center. Piscataway, NJ.

IEEE Std 1058.1-1987, "IEEE Standard for Software Project Management Plans," IEEE
Software Engineering Standards, IEEE Service Center, Piscataway, NJ.

IEEE Std 1063-1987, "IEEE Standard for Software User Documentation." IEEE Software
Engineering Standards, IEEE Service Center, Piscataway, NJ.

IEEE Std 1074-1991, "IEEE Standard for Software Life Cycle Processes," IEEE Software
Engineering Standards, IEEE Service Center, Piscataway, NJ.

IEEE Std 1209-1992, "IEEE Recommended Practice for the Evaluation and Selection of
CASE Tools," IEEE Software Engineering Standards, IEEE Service Center, Piscataway,
NJ.

IEEE Std 1219-1992, "IEEE Standard for Software Maintenance," IEEE Software
Engineering Standards, IEEE Service Center, Piscataway, NJ.

IEEE Std 1228-1994, "IEEE Standard for Software Safety Plans," IEEE Software
Engineering Standards, IEEE Service Center, Piscataway, NJ.

IEEE Std 1348-1995, "IEEE Recommended Practice for the Adoption of CASE Tools,"
IEEE Software Engineering Standards, IEEE Service Center, Piscataway, NJ.

IEEE Std 1498-1995 (Trial Use Standard-July 1995). "Standard for Information Technology
Software Life Cycle Processes: Software Development Acquirer-Supplier Agreement," IEEE
Software Engineering Standards, IEEE Service Center, Piscataway, NJ.

"Information Processing - Guidelines for the Documentation of Computer-Base
Application System," First Edition, International Standards Organization, 1985.

A-2

c
[I S r n - 3]

[IS09 1271

[IS092941

K&PI

~ ~ 4 9 8 1

[MIL9731

[MUSA]

[NASA]

WQA- 11

I S 0 9OOO-3:1991, "Quality Management and Quality Assurance Standards - Part 3:
Guidelines for the Application of I S 0 9001 to the Development, Supply and Maintenance
of Software," International Standards Organization (ISO), 1991.

"Information Processing Systems - User Documentation and Cover Information for
Consumer Packages," First Edition, International Standards Organization, 1988.

"Information Technology - Guidelines for the Management of Software Documentation,"
First Edition, TR9294, International Standards organization, 1990.

Kernighan, B., and Plauger, P., "Elements of Programming Style," 2nd ed., McGraw-Hill,
1978.

MIL-STD-498' , "Software Development and Documentation," Department of Defense,
December 5,1994. Documentation Data Item Descriptions include:
DI-IPSC-8 1427
DI-IPSC-81428
DI-IPSC-8 1429
DI-IPSC-8 1430
DI-IPSC-8 143 1
DI-IPSC-8 1432
DI-IPSC-8 1433
DI-IPSC-81434
DI-IPSC-8 1435
DI-IPSC-8 1436
DI-IPSC-8 1437
DI-IPSC-8 1438
DI-IPSC-8 1439
DI-IPSC-8 1440
DI-IPSC-8 144 1
DI-IPSC-8 1442
DI-IPSC-81443
DI-IPSC-8 1444
DI-IPSC-8 1445
DI-IPSC-8 1446
DI-IPSC-8 1447
DI-IPSC-8 1448

Software Development Plan
Software Installation Plan
Software Transition Plan
Operational Concept Description
System/Subsystem Specification
System/Subsyslem Design Description
Software Requirements Specification
Interface Requirements Specification
Software Design Description
Interface Design Description
Database Design Description
Software Test Plan
Software Test Description
Software Test Report
Software Product Specification
Software Version Description
Software User Manual
Software Center Operator Manual
Software Input/Output Manual
Computer Operation Manual
Computer Programming Manual
Firmware Support Manual

MIL-STD-973, "Configuration Management," Department of Defense, April 17, 1992.

Musa, J., Iannino, A., and Okumoto, K., Reliability: Measurement. Prediction
Auulications, McGraw-Hill Book Co., New York, 1987.

"Manager's Handbook for Software Development,"
Administration, SEL-84-101(Revision l), November 1990.

"Quality Assurance Program Requirements for Nuclear Facilities," American National
Standards Institute and American Society of Mechanical Engineers, March 31, 1990.

National Aeronautics and Space

This document supersedes DOD-STD-2167A and DOD-STD-7935A. This new standard defines a set of
activities and documentation suitable for the development of both weapon systems and automated
information systems.

A-3

[NQA-2 PI 2.71 "Quality Assurance Requirements of Computer Software for Nuclear Facility
Applications," American National Standards Institute and American Society of
Mechanical Engineers, May 3 1,1990.

[NLJREG/CR4640] Bryant, J., and Wilburn, N., "Handbook of Software Quality Assurance Techniques
Applicable to the Nuclear Industry," August 1987.

[SEI-CORE]

[SEI-DEFECT]

[SEI-EFFORT]

[SEI-SCE]

[SEI-SEPG]

[SEI-SIZE]

[SLPlOll]

[SSGI

Parnas, D., Madey, J., and Iglewski, M., "Precise Documentation of Well-Structured
Programs," IEEE Transactions on Software Engineering, December 1994.

"Process Guidelines for Sandia W R Software Development," SAND88-0024, July 1992.

"Sandia Preferred Processes for Software Development," Sandia National Laboratories,
Issue 1, February 9, 1994.

"DOE/AL Quality Principles and Requirements for Nuclear Weapons Complex
Research, Design, Development, Production, Dismantlement, Maintenance, Stockpile
Evaluation, and Disassembly/Disposal," Revision 8, July 17, 1995.

"Software Development/Support Methodology," SAND88-2 135, August 1988.

Paulk, M., Curtis, B., Chrissis, M., and Weber, C., "Capability Maturity Model for
Software, Version 1.1 ," Software Engineering Institute, CMU/SEI-93-TR-24, February
1993.

Carleton, A., Park, R., Goethert, W., Florac, W., Bailey, E., and Pfleeger, S., "Software
Measurement for DoD Systems: Recommendations for Initial Core Measures," Software
Engineering Institute, CMU/SEI-92-TR- 19, September 1992.

Florac, W., "Software Quality Measurement: A Framework for Counting Problems and
Defects," Software Engineering Institute, CMU/SEI-92-TR-22, September 1992.

Goethert, W., Badey, E., and Busby, M., "Software Effort and Schedule Measurement: A
Framework for Counting Staff-Hours and Reporting Schedule Information," Software
Engineering Institute, CMU/SEI-92-TR-2 1, September 1992.

Humphrey,W., "A Method for Assessing the Software Engineering Capability of
Contractors," Software Engineering Institute, CMU/SEI-87-TR-23, September 1987.

Fowler, P., and Rifkin, S., "Software Engineering Process Group Guide," Software
Engineering Institute, CMU/SEI-90-TR-24, September 1990.

Park, R., "Software Size Measurement: A Framework for Counting Source Statements,"
Software Engineering Institute, CMU/SEI-92-TR-20, September 1992.

"Software Management," Sandia Laboratories Policy, April 1, 1993.

Sandia Software Guidelines, Volumes 1-5, Sandia National Laboratories.
[SSGvl] Volume 1: Software Quality Planning
[SSGV~] Volume 2: Documentation
[SSGV~] Volume 3: Standards, Practices, and Conventions
[SSGV~] Volume 4: Configuration Management
[SSGvS] Volume 5: Tools, Techniques, and Methodologies

A-4

[STSC] Software Technology Support Center, Ogden Logistics Center
[STSCsm] Software Management Guide, April 1994.
[STSCsr] Requirements Analysis & Design Tools Report, April 1994.
[STSCsc] Source Code Static Analysis Tools Report, April 1994.
[STSCst] Test Preparation, Execution and Analysis Tools Report, April 1994.
[STSCre] Re-engineering Tools Report, April 1994.
[STSCdo] Documentation Technology Report, April 1994.
[STSCgd] Guidelines for Successful Acquisition and Management of Software Intensive

Systems: Weapons Systems, Command and Control Systems, Management
Information Systems, February 1995.

[SQAS-CASE] SQAS93-001, "CASE Tools: Culture and Implementation," Software Quallty Assurance
Subcommittee, January 1993.

[SQAS-GLOSS] SQAS90-001, "NWC Glossary of Preferred Software Engineering Terminology," Software
Quality Assurance Subcommittee, October 1990.

[wcw "Proceedings of the 2nd Working Conference on Reverse Engineering (WCRE)," IEEE
Computer Society, July 14-16, 1995.

WFOI "WFO Development Standards Notebook," Sandia National Laboratories.

Blank Page

A-6

Appendix B: Acronyms

.-

ANSI
ASME
CALS
CALS
CASE
CD-ROM
CGM
CM
CMM
COBOL
COTS
csc
csu
DID
DoD
DOE
DPMM
DTP
EP
EPROM
ESTSC
GUI
FORTRAN
IDEA
IEEE
IGES
IRS
IS0
IV&V
KPA
LAN
MIL
MS
NCLOC
NIAM

NWC
OSTI
Pc
PDL
PDR
PERT
PGWR
PPSD
QER
QP
RAS
S I W
SCM
SCMP

NQA

American National Standards Institute
American Society of Mechanical Engineers
Computer-aided Acquisition and Logistic Support
Continuous Acquisition and Life-Cycle Support
Computer- Aided Software Engineering
Compact Disk-Read Only Memory
Computer Graphics Metafile
Configuration Management
Capability Maturity Model
Common Business Oriented Language
Commercial-Off-The-Shelf
Computer Software Component
Computer Software Unit
Data Item Description
Department of Defense
Department of Energy
Documentation Process Maturity Model
Desk Top Publisher
Engineering Procedure
Erasable Programmable Read Only Memory
Energy Science and Technology Software Center
Graphical User Interface
Formu la Translation Language
Integrated Development Environment and Assistant
Institute of Electrical and Electronics Engineers
Initial Graphics Exchange Specification
Interface Requirements Specification
International Standards Organization
Independent Verification and Validation
Key Process Area
Local Area Network
Military
Microsoft
Non-Commented Source Lines of Code
Natural Language Information Analysis Method
Nuclear Quality Assurance
Nuclear Weapons Complex
Office of Scientific and Technical Information
Personal Computer
Program Design Language
Preliminary Design Review
Performance Evaluation Review Technique
Process Guidelines for Sandia Weapons Related Software Development
Preferred Process for Software Development
Qualification Evaluation Release
Qualification Plan
Requirements Allocation Sheet
Software
Software Configuration Management
Software Configuration Management Plan

B- 1

SDD
SDF
SDP
SDSM
SEI
SGML
SLOC
SLP
SMP
SNL
SQA
SQAP
SQAS
SRR
SRS
SSF
SSGvn
S S M P
s SP
SSTP
STD
STSC
SUG
S W P
TIE-In
TIM
WBS
WFO
WR
www

Software Design Description
Software Development Folder (or File)
Software Development Plan
Software Development/Support Methodology
Software Engineering Institute
Standard Generalized Markup Language
Source Lines of Executable Code
Sandia Laboratory Policy
Software Management Plan
Sandia National Laboratories
Software Quality Assurance
Software Quality Assurance Plan
Software Quality Assurance Subcommittee
Software Requirements Review
Software Requirements Specification
Software Support Folder
Sandia Software Guidelines, Volume n
Software Supporthlaintenance Plan
Software Safety Plan, Software Security Plan
Software System Test Plan
Standard
Software Technology Support Center
Software Users Guide
Software Verification and Validation Plan
Technology Information Environment for Industry
Technical Interchange Meeting
Work Breakdown Structure
Work For Others
War Reserve
World Wide Web

B-2

.

SYSTEM
REQUIREMENTS
ANALYSIS

SOFTWARE
REQUIREMENTS
ANALYSIS

SOFTWARE
DESIGN

- _ _ _ _

- - - _ -

- - _ - _
CODING AND
UNIT TESTING

K%GTATI%N8
MODULE TEST

SOFTWARE
SYSTEM
TEST

SOFTWARE
MAINTENANCE

- _ _ _ _

- - - _ -

Appendix C: Tutorial on Life Cycle Documentation
This appendix reviews a comprehensive set of documentation that could be created as part of a software
development project. Only a very limited number of projects would ever require the creation of a document
set that contained all, or nearly all, of the documentation discussed. Software documentation provides a
mechanism to efficiently communicate information about a software product or process. The application
will dictate the format, required delivery time, level of detail, and storage media for the documentation.
Documentation can serve as an interface definition between what a customer wants and what a supplier
builds. Documentation can facilitate communication of schedule, resource, and engineering details among
system and software team members during software development. Documentation can define as-built
information for use by the support organization when software changes are needed. Documentation can
capture key software characteristics of process and product that serve as a measure of software quality.
Documentation can serve as an historical reference for use in lessons learned and future software process
improvement. Accurate and timely documentation can reduce rework throughout the software’s life cycle.

C.l
The following paragraphs describe the software life cycle activities, life cycle processes, and integration of
the software activities and processes in terms of their associated documentation. The software
documentation provides snapshots of the overall state of the development and maintenance efforts over
time. The management-planning documents and software-specific product documents addressed in this
appendix include and supplement the many documents described in Chapter 4 of this volume.

The life cycle activities described in the following subsections are addressed as being carried out in
sequence but are usually carried out in parallel and iteratively. The sequencing of documentation
development as a function of the life cycle activity is depicted in Figure C-1.

Life Cycle Relationships of Key Documents

I AT END OF
PHASE BELOW

~~ ~~

KEY SOFTWARE PRODUCT-ITEM DOCUMENTS

SYSTEM
3EQUIREMENTS
5PEClFlCATlON . - 7 SOFTWARE

SOFTWARE

TEST
-ws7=€M- -

r- pr - -
FOLDERS TEST

DESCRIPTIONS \ SOFTWARE
USERS
GUIDE

Figure Gl. Relationship of Key Software Product-Hem Documents to Standard Software
Life Cycle Activities

C.l . l Description of System Requirements Analysis Activities
The first life cycle activity, System Requirements Analysis, shown in Figure C-1 is not a primary software
effort although software leaders may participate. The main objective of System Requirements Analysis is to
identify, document, and gain customer approval for all the functional, external interface, performance, and
miscellaneous requirements. In addition, design constraints, reliability measures, and availability measures
are identified. When the System Requirements Specification exists, or is developed, it will be used as a
starting point for software development. When the System Requirements Specification is created as part of
the project, development of that document is normally the responsibility of the system project manager. At
the end of this activity, the customer-approved System Requirements Specification should be brought under
project configuration control as the Functional Baseline for the system.

Software-related processes and activities may be carried out to develop the plans and schedules that will be
used to manage and control the software development activities. Existing software project management
documentation can be tailored based upon the System Requirements Specification. The following
documents are potential targets for modification or creation during System Requirements Analysis:

Software Management Plan (SMP);
0 Software Development Plan (SDP);
0

0

0

Software Project Schedule.

Software Standards, Practices, and Conventions (may be tailored using guidance in reference
[SSGV~]); could exist as a separate document or as an appendix in the SDP
Software Quality Assurance Plan (SQAP);
Software Configuration Management Plan (SCMP);
Software Verification and Validation Plan (SVVP); and

C.1.2 Description of Software Requirements Analysis
The Sandia Preferred Process for Software Development (PPSD), see reference [PPSD], lists and defines
nine major tasks related to the process for development and maintenance of software requirements. Those
tasks include:

0

0

0

0 Task5: Inspect SRS;

Task 7: Get customer feedback;
0

0

Task 1: Define and schedule Software Requirements Specification (SRS) activities;
Task 2: Write SRS Overview and get customer feedback:
Task 3: Prepare Draft SRS;
Task 4: Schedule SRS Inspection and distribute SRS;

Task 6: Resolve inspection issues;

Task 8: Approve and distribute SRS; and
Task 9: Maintain the approved SRS.

The first technical software effort in a software project is normally the Software Requirements Analysis
activity. The objective is to identify the system requirements that are to be satisfied by application software
and the interface requirements that have to be satisfied between the software being developed by the project
and the remaining system components, which may consist of both hardware and software. These allocated
requirements are documented in one or two specification documents. The Software Requirements
Specification (SRS) may address both types of requirements. However, on large projects it may be useful to
document the interface features in a separate Interface Requirements Specification (IRS). Prior to being
submitted for approval, the requirements documents should be subjected to a formal software requirements
inspection, and all defects found should be corrected. After approval, these documents provide the basis for
design of the application software and the software components necessary to satisfy the interfaces to the rest
of the system. After being approved, the requirements specification(s) should be brought under
configuration management control as the Allocated Baseline for the software being developed.

c-2

When a Software Requirements Review (SRR) is required, the approved version of the requirements
document(s) is the basis for the review. In addition, these documents will also form the technical basis
against which the software architecture will be analyzed during a Preliminary Design Review (PDR).
Depending on the size of the development project and the desires of the customer, a PDR may address the
entire system, or only the software that is being developed for the system.

. -.

C.1.3 Description of Software Design
After the requirements documents have been baselined, they form the basis for deriving the preliminary
design of the software being developed. Typically design activities consist of two design processes:
preliminary design and detailed design. In many cases detailed design activities may begin before the
preliminary design has been fully completed. The reference PPSD] defines eleven major tasks related to
the software design process. Those tasks include:

0

0

Task 1: Gather, read, and understand information on which the design is to be dependent;
Task 2: Identify consultants and interfaces;
Task 3: Hold design brainstorming meeting to identify alternative design approaches;
Task 4: Investigate and evaluate alternative design approaches;
Task 5: Produce preliminary (top-level) and detailed design and define data dictionary;
Task 6: Complete the draft of the Software Design Description;
Task7: Schedule the Software Design Description (SDD) inspection(s) and distribute the draft
SDD to members of the Inspection Team (Note: for large systems there may be more than one
SDD, hence, more than one SDD inspection; e.g., one for each major component);
Task 8: Inspect the SDD(s);
Task 9: Resolve inspection issues and report the inspection results to management;
Task 10:Approve and distribute the inspected [and corrected] SDD; and
Task 11:Maintain the approved SDD.

Preliminary Software Design
In a structured design approach, the preliminary software design process principally consists of
decomposing the overall system into lower level elements, often referred to as Computer Software
Components (CSCs). The top-level CSCs are then further decomposed into lower level CSCs or into units
that are often referred to as Computer Software Units (CSUs). An example software component structure
resulting from such a decomposition is depicted in Figure C-2. Decomposition is commonly carried down
to lower levels until each CSU typically represents a code element that will carry out a single, unique
function. Altogether, the lower level CSUs result in a set of code elements that, when implemented, will
satisfy all the requirements allocated to software and identified in either the SRS or the IRS.

c-3

1-1 1 -2
csc csc

Figure C-2. Decomposition of Software Into Component Elements

1-3
csc

The preliminary design is basically complete when the decomposition structure is fully defined and
documented in a SDD. This design should then be subjected to one or more design inspections, depending
on the size of the software system that is to be developed. Any defects noted during these inspections
should be corrected before commencement of the detailed design process for the associated code elements.
Following preliminary design inspections, the corrected preliminary design may be brought under informal
control as the initial version of the Developmental Configuration.

The design inspections and later design, implementation, and testing activities will be facilitated by
beginning development of a Traceability Matrix. This matrix should map every one of the software
requirements onto the CSCs and CSUs under which it is to be satisfied.

If a Software Users Guide is to be developed, it should be drafted as a part of the design activities. The
Software Users Guide is should be initiated prior to the completion of the preliminary design activity and
completed during the detailed design activity. When such a document is produced, it also should be
inspected. This inspection is useful in detecting defects in requirements and design.

Detailed Software Design
The objective of detailed design for software is to provide the basis whereby each individual computer
software unit can be coded directly from its detailed design. Detailed designs may be documented in the
form of flow charts, structure charts, state transition diagrams, schema and schemata (for databases when
database managers are being used to support the implementation), database design (for systems that will
not use a database manager), program design language, pseudo code, etc. A copy of all requirements and
design features allocated to a given CSU should be placed in a Software Development Folder (SDF) for

1-1 -1 1-2-3
csu csc

C-4

1-3-2
csc

that unit. Each of these folders will be the initial basis for beginning coding, design, and execution of unit
testing of the associated CSU.

C.1.4 Description of Coding and Unit Testing
The reference [PPSD] defines seven tasks related to the software implementation process. All of these tasks
are applicable to each of the individual code units (CSUs). The seven tasks include:

Task 1: Prepare for coding through familiarization with the development environment, the
development language, the overall design being implemented, and the portions of the SDD that
are applicable to the assigned unit to be coded;
Task 2: Develop source code that implements the logic of the design for that code unit;
Task 3: Schedule code inspection for the CSU and distribute the inspection package:
Task 4: Inspect code unit;
Task 5: Resolve code inspection issues and report the results of the software inspections to
management;
Task 6: Unit test each CSU and correct defects found; and

0

0

0

Task 7: Maintain the code for each CSU.

C.1.5 Description of Software Integration and Testing
Software Integration and Testing is particularly applicable during the development of larger software
systems but can be useful for medium and even small systems. These testing activities involve integrating
the software units and testing the interfaces between the units after each new unit has been added to the
integrated module. The integration strategy can be top-down (requiring stubs) or bottom-up (requiring
drivers). Using Figure C-2 as an example, Level 1-2-3-2-1 (CSU) might be integrated with Level 1-2-3-2
(CSC) and the resulting module tested. Then Level 1-2-3-2-2 (CSU) could be added to the existing two-unit
module and the combined three unit module tested together; followed by adding Level 1-2-3-2-3 (CSU) to
the existing three unit module and the combined four unit module tested. The next step would be linking
Level 1-2-3-2 (CSC) and its three subordinate units to Level 1-2-3 (CSC) for testing. The next step would
be to link Level 1-2-3-1 (CSU) to Level 1-2-3 (CSC) for testing of the six unit module, and so forth until all
CSUs in the branch under Level 1-2-3 (CSC) have been integrated with their parent Level 1-2 (CSC) and
tested for connectivity and data passing. After that has been completed, the next step would be to link all
three CSCs together in preparation for software system testing.

C.1.6 Description of Software System Testing
The reference [PPSD] defines ten major tasks related to the software system testing process. Those tasks
include:

0

0

0

0

0

0

0

0

0

0

Task 1: Identify system software tests that are driven by the requirements in the SRS;
Task 2: Identify test environments driven by the SRS requirements:
Task 3: Complete the Software System Test Plan (SSTP);
Task 4: Schedule the SSTP inspection;
Task 5: Inspect the S S P ,
Task 6: Resolve SSTP inspection issues;
Task 7: Approve and distribute the S S P ,
Task 8: Execute tests and software to correct problems;
Task 9: Rerun failed tests; and
Task 10:Maintain approved SSTP.

The first two tasks for system software testing should be started a short time before the end of the Software
Requirements Analysis activities. Starting these tasks early will help identify defects in the SRS related to
the applicability of individual tests or potential for verification through demonstration, analysis, or
inspection. The SSTP developed and corrected during tasks 3 through 7 should address how each
requirement in the SRS will be verified. The necessary verification method(s) for each of the requirements

c-5

can be described under the Test Descriptions section of the SSTP. Each test description addresses the
following:

0

0

0

0

0

0

brief description of the test;
regression testing requirements relative to changes that have been made to the code:
identification of the requirements from the SRS that will be verified by that test:
cross references to any associated documents;
step-by-step description of the test process: and
identification of any dependencies between tests; Le., which tests must have been completed
before the test being described can be carried out.

C.1.7 Description of Software Maintenance
Software maintenance is the process of modifying a software system or component after delivery to correct
faults, improve performance or other attributes, adapt to a changed environment, or add new functionality.
Maintenance can be divided into four basic subtasks and their underlying steps:

Task 1: Change Analysis:
+ Change Identification and Classification
+ Change Feasibility Analysis
j Change Detailed Analysis
Task 2: Change Development:
+ Modify Software Requirements Specification
j Modify Software Design Description
j Modify Source Code
+ Test Software Units and Components
+ Review Unit and Component Test Results

3 Update Software System Test Plan, Test Procedures, and Regression Test Cases
+ Conduct System Integration Test Cases
+ Analyze Test Failures
+ Review and Report Test Results

0 Task 4: Change Release: - Develop Delivery Package
+ Verify Delivery Package
=$. Release Delivery Package
+ Deliver and Install Delivery Package
3 Train Users on Delivery Package Features.

Task 3: Change Testing:

C.2 Project Management Documentation
The following paragraphs discuss project management documentation that addresses project plans,
schedules, costing, resource requirements, software measurement and metrks documents, and recording of
lessons learned information. Applicable documents that might include the project management
documentation include: software project/development plan, software quality plan, software configuration
management plan, software support plan, software verification and validation plan, software safety/security
plan, software management notebook, and software development folder.

C.2.1 Project Plans, Schedules, and Resource Requirements Documentation
When developed, the Software Development Plan provides the approach to be followed in managing a
software project. The ability to manage that project effectively often hinges on following the defined
approach and is based on the schedule developed for execution of the project. Such a schedule becomes the
baseline of completion dates for activities to be carried out and may define the expected resource

C-6

requirements necessary to meet those dates. A commonly used method for development of such a schedule
consists of the following sequence of activities:

Step 1: decompose the project activities identified in Figure C-1 into lower level work units through
development of a work breakdown structure (WBS); Figure C-3 contains a detailed example of a
partial WBS for a software project;

Step 2: define the precedence relationships between the work units in the WBS;
Step 3: create a network schedule based on the defined work units and precedence relationships using

this may be facilitated using a software package such as Microsoft Critical Path Methodology:
Project, TimeLine, or Super Project;

Step 4: allocate staff member resources to individual work units;
Step 5: allocate other resources to individual work units;
Step 6: reconcile schedule defects (e.g., excess durations, excess resource requirements during peak

Step 7: print schedule in appropriate formats (e.g., network or PERT diagrams, Gantt charts, resource

Step 8: coordinate approval of reconciled schedule by management and customers;
Step 9: baseline approved schedule; and
Step 10: copy baseline schedule to create initial actual schedule that will be updated on a periodic

periods);

requirements versus time, cost versus time);

basis, and compared against the baseline schedule to support project tracking.

1. Development of (Name of Software Project)

1.1.1 General Project Management
1.1.1.1 Project Budgeting
1.1.1.2 Technical Interchange Meetings
1.1.1.3 Technical Reviews

1.1 Project Management

1.1.1.3.1 Software Requirements Review(s)
1.1.1.3.2 Software Preliminary Design Review(s)
1.1.1.3.3 Software Detailed Design Review(s)
1.1.1.3.4 Software Test Readiness Review($

1.1.1.4 Project Close-out

1.1.2.1 Analysis of System Requirements
1.2.2.2 Identification of Major Software Components
1.1.2.3 Determination of Documentation Requirements
1.1.2.4 Development of Work Breakdown Structure
1.1.2.5 Definition of Precedence Relationships
1.1.2.6 Development of Network Schedule
1.1.2.7 Allocation of Resources to Project Activities

1.1.3.1 Collection of Progress Data
1.1.3.2 Collection of Effort Data
1.1.3.3 Schedule Updating
1.1.3.4 Schedule Adjustment
1.1.3.5 Schedule Status Reporting

1.1.2 Baseline Scheduling

1.1.3 Project Tracking

Figure C-3. Sample Software Work Breakdown Structure: Part 1 of 5

r 1.1.4 Software Staff Management
1.1.4.1 Staff Initiation

1.1.4.1.1 Reassignment of Current Staff
1.1.4.1.2 Hiring of New Staff

1.1.4.2 Staff Allocation
1.1.4.3 Staff Training

1.1.5 Software Quality Assurance
1.1.5.1 Definition of Quality Measures
1.1.5.2 Collection of Quality Measures
1.1.5.3 Analysis of Quality Data
1.1.5.4 Reporting of Quality Status

1.1.6 Software Configuration Management
1.1.6.1 Configuration Identification
1.1.6.2 Configuration Management

1.1.6.2.1 Software Allocated Baseline Management
1.1.6.2.2 Software Developmental Configuration Management

1.1.6.2.2.1 Software Development Folder Management
1.1.6.2.2.2 Software Code Unit Management
1.1.6.2.2.3 Software Development Library

1.1.6.2.3 Software Product Baseline Management
1.1.6.2.3.1 Software Product Version 1.0 Management
1.1.6.2.3.2 Software Product Version 2.0 Management
1.1.6.2.3.i Software Product Version i.0 Management
1.1.6.2.3.n Software Product Version n.0 Management

1.1.6.3 Software Configuration Control Board
1.1.6.3.1 Software Problem Report Management

1.1.6.3.1.1 Software Problem Report Recording and Tracking
1.1.6.3.1.2 Software Problem Report Analysis
1.1.6.3.1.3 Software Problem Report Close Out

1.1.6.3.2.1 Software Change Analysis
1.1.6.3.2.2 Software Change Review

1.1.6.3.2 Software Change Management

1.1.6.4 Configuration Status Accounting
1.1.6.4.1 Configuration Status Analysis
1.1.6.4.2 Configuration Status Reporting

1.1.6.5.1 Functional Configuration Audit
1.1.6.5 Configuration Audits

1.1.6.5.1.1 Traceability of Requirements Into Test Reports
1.1.6.5.1.2 Validation of Test Results For Each Requirement

1.1.6.5.2.1 Verification Software Requirements Specification Reflects System

1.1.6.5.2.2 Verification Software Design Description Reflects System Tested

1.1.6.5.2.3 Verification Source Code Listings Reflect System Tested Codes

1.1.6.5.2 Physical Configuration Audit

Tested Codes

Codes

1.2 Process Documentation
1.2.1 Software Requirements Documents

1.2.1.1 Software Requirements Specification
1.2.1.2 Interface Requirements Specification

Figure C-3. Sample Software Work Breakdown Structure: Part 2 of 5

C-8

.

1.2.2 Design Documents
1.2.2.1 Documentation of Preliminary Design/Structure
1.2.2.2 Software Design Description

1.2.3.1 Unit Development Folders
1.2.3 Coding Activities Documents

1.2.3.1.1 Unit 1 Development Folder
1.2.3.1.2 Unit 2 Development Folder
1.2.3.1.i Unit i Development Folder
1.2.3.1.n Unit n Development Folder

1.2.3.2.1 Unit 1 Tests
1.2.3.2.2 Unit 2 Tests
1.2.3.2.i Unit i Tests
1.2.3.2.n Unit n Tests

1.2.3.3.1 Module 1 Tests
1.2.3.3.2 Module 2 Tests
1.2.3.3.i Module i Tests
1.2.3.3.n Module n Tests

1.2.3.2 Unit Tests

1.2.3.3 Module Tests

1.2.4 System Testing Documents
1.2.4.1 Software System Test Plan
1.2.4.2 Software Test Descriptions

1.2.4.2.1 Software Test 1 Description
1.2.4.2.2 Software Test 2 Description
1.2.4.2.i Software Test i Description
1.2.4.2.n Software Test n Description

1.2.4.3 Traceability of Requirements Into Test Descriptions
1.2.4.4 Software Test Procedures

1.2.4.4.1 Software Test 1 Procedures
1.2.4.4.2 Software Test 2 Procedures
1.2.4.4.i Software Test i Procedures
1.2.4.4.n Software Test n Procedures

1.2.4.5.1 Software Test 1 Report
1.2.4.5.2 Software Test 2 Report
1.2.4.5.i Software Test i Report
1.2.4.5.n Software Test n Report

1.2.4.5 Software Test Reports

1.3 Requirements Analysis
1.3.1 Analysis of Allocated Systems Requirements
1.3.2 Functional Requirements Analysis
1.3.3 Performance Requirements Analysis
1.3.4 Interface Requirements Analysis

1.3.4.1 Internal Interface Requirements Analysis
1.3.4.2 External Interface Requirements Analysis

1.3.5.1 Compliance Standards Requirements Analysis
1.3.5.2 Hardware Limitations Analysis

1.3.5 Design Constraint Analysis

Figure C-3. Sample Software Work Breakdown Structure: Part 3 of 5

1.3.6 Attribute Requirements Analysis
1.3.6.1 Security/Safety/Integnty Requirements Analysis

1.4.

1.3.6.2 Reliability Requirements Analysis
1.3.6.3 Availability Requirements Analysis
1.3.6.4 Maintainability Requirements Analysis
1.3.6.5 Operability Requirements Analysis
1.3.6.6 Transportability Requirements Analysis

1.3.7.1 Database Requirements Analysis
1.3.7.2 Operations Requirements Analysis
1.3.7.3 Site Requirements Analysis

1.3.8 Initiation of Requirements Traceability
1.3.9 Software Requirements Inspection(s)

1.4.1 Preliminary Design

1.3.7 Miscellaneous Requirements Analysis

1.4 Design

1.4.1.1 Design Rationale
1.4.1.2 Module Decomposition

1.4.1.2.1 Module 1 Decomposition
1.4.1.2.2 Module 2 Decomposition
1.4.1.2.i Module i Decomposition
1.4.1.2.n Module n Decomposition

1.4.1.3 Data Decomposition
1.4.1.4 Traceability of Requirements Into Preliminary Design
1.4.1.5 Software Preliminary Design Inspection(s)
Detailed Design
1.4.2.1 Module Detailed Design

1.4.2.1.1 Module 1 Detailed Design
1.4.2.1.2 Module 2 Detailed Design
1.4.2.1 .i Module i Detailed Design
1.4.2.1 .n Module n Detailed Design

1.4.2.2.1 Data Entity 1 Detailed Design
1.4.2.2.2 Data Entity 2 Detailed Design
1.4.2.2.i Data Entity i Detailed Design
1.4.2.2.n Data Entity n Detailed Design

1.4.2.2 Data Detail Design

1.4.2.3 Traceability of Requirements Into Detailed Design
1.4.2.4 Unit Testing Strategy
1.4.2.5 Software Detailed Design Inspection(s)

1.5 Coding and Unit Testing
1.5.1 Code Unit 1 Development and Testing

1.5.1.1 Unit 1 Coding
1.5.1.2 Unit 1 Testing
1.5.1.3 Unit 1 Code Inspection

1.5.2.1 Unit 2 Coding
1.5.2.2 Unit 2 Testing
1.5.2.3 Unit 2 Code Inspection

1.5.2 Code Unit 2 Development and Testing

Figure C-3. Sample Software Work Breakdown Structure: Part 4 of 5

c- 10

.

1.5.i Code Unit i Development and Testing
1.5.i.l Unit i Coding
1 5 . 2 Unit i Testing
1.5.i.3 Unit i Code Inspection

1.5.n.l Unit n Coding
1.5.n.2 Unit n Testing
1.5.n.3 Unit n Code Inspection

1.5.n Code Unit n Development and Testing

1.6 Integration Testing
1.6.1 Module 1 Integration and Testing

1.6.1.1 Module 1 Integration
1.6.1.2 Module 1 Testing

1.6.2 Module 2 Integration and Testing
1.6.2.1 Module 2 Integration
1.6.2.2 Module 2 Testing

1.6.i Module i Integration and Testing
1.6.i. 1 Module i Integration
1.6.i.2 Module i Testing

1.6.n Module 1 Integration and Testing
1.6.n.l Module n Integration
1.6.n.2 Module n Testing

1.7 Software System Testing
1.7.1 Software System Test 1

1.7.1.1 Software System Test 1 Preparations
1.7.1.2 Software System Test 1 Execution
1.7.1.3 Software System Test 1 Data Analysis

1.7.2.1 Software System Test 2 Preparations
1.7.2.2 Software System Test 2 Execution
1.7.2.3 Software System Test 2 Data Analysis

1.7.i.l Software System Test i Preparations
1.7.i.2 Software System Test i Execution
1.7.i.3 Software System Test i Data Analysis

1.7.n.l Software System Test n Preparations
1.7.n.2 Software System Test n Execution
1.7.n.3 Software System Test n Data Analysis

1.7.2 Software System Test 2

1.7.i Software System Test i

1.7.n Software System Test n

1.8 Software Installation Support
1.8.1 Software-Hardware Integration
1.8.2 System Installation
1.8.3 System Acceptance Testing

Figure C-3. Sample Software Work Breakdown Structure: Part 5 of 5

C.2.2 Project Costing and Resource Analysis Documentation
The baseline schedule described in the preceding subsection documents the project cost and resource
utilization. During the execution of the project it will be necessary to collect the data required to determine
how well the project is progressing versus the assigned budget and forecast utilization of resources. These
data can then be input into the actual schedule to provide documentation of actual costs and resource usage
against the scheduled values. The actual data required to carry out this activity are described in the
following subsection.

Unit of Measure

Counts of physical source lines of code

Counts of staff hours expended

Calendar dates (major events/milestones)

Counts of software problems and defects

Mean Time Between Failures (due to

C.2.3 Software Measurement and Metric Documentation
A wide variety of potential software measurements and metrics have been developed. Generally, these can
be divided into three categories: (1) Resource Measurements: (2) Process Measurements: and (3) Product
Measurements. Resource metrics refer to the hardware, software tools, office space, and personnel needed
to perform the development of software. Process metrics refer to task time and effort during requirements
analysis, design, coding, and testing processes used to develop software. The associated metrics include
elapsed time and elapsed effort used to complete a task, and efficiency in removing defects. Product metrics
are quality measures of the documents, code listings, user manuals, test reports, and executable software
product output from the processes.

For the purposes of this document, only basic data collection and analysis documentation is described.
Basic measurements are normally used to support estimation and planning, project tracking, and defect
measurement. These measurements include software size, effort required, schedule progress, and product
defects. Software measurement goals and the use of metric information is normally documented in a Project
Management Plan or is included in project tracking data reports. The core measures recommended for
initial implementation are identified in Figure C-4. See reference [SEI-CORE] for more discussion on core
measures.

Characteristic Addressed

Size, Progress, Reuse

Effort, Cost, Resource Utilization

Schedule, Progress

Quality, Acceptability for Delivery,
Improvement Trends

Operational Reliability

Figure C-4. Core Measures Recommended for Initial Implementation

C.2.3.1 Software Size
Some of the more popular and effective measures of software size are non-commented physical source lines
of code (NCSLOC), logical source statements (instructions), function points (feature points), and counts of
logical functions or computer software units. The measure recommended for physical source lines of code
is generally stated as all lines of the source code listing except those that are comments or blank lines.
However, such a definition is open to wide variations in interpretation. The Software Engineering Institute
(SEI) has developed a guideline document, Sofnvare Size Measurement: A Framework for Counting Source
Statements [SEI-SIZE], that assists an organization in determining which interpretation it will use. In
addition, Appendix E of that document provides detailed checklist forms for defining counts of source
statements.

c-12

C.2.3.2 Software Effort Required and Progress Against the Planned Schedule

*

Reliable measures of software effort are prerequisites for reliable measures of software cost. They are also
important in a more direct way. The principal means for managing and controlling costs and schedules is
through planning and tracking the human resources assigned to individual tasks and activities. The
recommended unit of effort is the staff-hour. A staff hour can be defined as an hour of time actually
expended by a member of the staff on activities directly related to software Work Breakdown Structure
activities. The use of staff-hours is recommended rather than staff-weeks or labor-months because the
number of hours comprising the latter two may not be the same across organizations or projects.

The SEI has developed a guideline document, Sofhvare Effort and Schedule Measurement: A Framework
for Counting Stafl-Hours and Reporting Schedule Information [SEI-EFFORT], that will assist an
organization in defining which staff hours are included and which are excluded when counting actual staff
effort expended in software development. In addition, that document provides detailed information relative
to defining a framework for measurement of progress versus the planned schedule.

C.2.3.3 Software Defects
Defining what a customer or user views as true software quality can be elusive. Whatever the criteria, it is
clear that the number of problems and defects associated with a software product varies inversely with
perceived quality. The following are the SEI'S definitions of the terms defects and problems:

Problem: A software problem is a human encounter with software that causes difficulty, doubt, or
uncertainty in the use or examination of the software. Examples include: (1) a difficulty encountered with a
software product or software work product resulting from an apparent failure, misuse, misunderstanding, or
inadequacy; (2) a perception that the software product or software work product is not behaving or
responding according to specification; (3) an observation that the software product or software work product
is lacking function or capability needed to complete a task or work effort.

Defect: A software defect is: (1) any unintended characteristic that impairs the utility or worth of an item;
(2) any kind of shortcoming, imperfection, or deficiency; (3) any flaw or imperfection in a software work
product or software process. Examples include such things as mistakes, omissions and imperfections in
software artifacts, or faults contained in software sufficiently mature for test or operation.

Counts of software problems and defects allow qualitative description of trends in detection and correction
activities. They also allow the tracking of progress in identifying and fixing process and product
imperfections. In addition, problem and defect measures are the basis for quantifying other software quality
attributes such as reliability, correctness, completeness, efficiency, and usability.

Again, the SEI has developed a guideline document, Sojware Quality Measurement: A Framework for
Counting Problems and Defects [SEI-DEFECT], that will assist an organization in defining the basis for
identifying and counting problems and defects.

C.2.3.4 Software Failure Rate and Software Reliability
Two terms commonly associated with software problems are defined in reference [IJ%E610] as:

0 Failure - the inability of a system or component to perform its required functions within the
specified performance requirements; and
Fault - a defect in a hardware device or component, or an incorrect step in a process or data
definition in a computer program.

From these definitions it is apparent that a fault may exist in software whether or not it is being executed.
Conversely, a failure occurs when a fault is encountered during program execution. Given these definitions,
failures and defects can both be counted but only failures can be used to derive a rate of occurrence.

Software reliability is defined in statistical terms as the probability of failure free operation of the software
in a specified environment for a specified period of time. For this definition to make sense the following
terms must be specifically defined:

Specified Environment - refers to the defined conditions within which the software must operate:
includes the given machine configuration or physical facilities that are in place during the period
of time: hardware failures cannot be counted as software failures:
Period of Time - refers to an interval with a definite starting point and ending point: and
Failure - as defined above: a term that is typically taken to mean nonconformance to requirements
and therefore is a relative term; gradations exist within this definition so that failures can be
catastrophic or merely annoying.

Based on these definitions, software failure rates can be calculated as the number of failures experienced
during a specified period of time. Software reliability depends on the criticality of failures considered, the
failure rate, and other considerations related to the failure probability distribution and operational use
profiles (see reference [MUSA]).

0

C.3 Process Documentation
The following paragraphs provide guidelines for documentation of software development and maintenance
processes that address:

software requirements management;
software design activities:
software unit coding and testing activities; and
formal and informal in-process software evaluations such as inspections, walk throughs, reviews,
and configuration audits.

These discussions relate the process documentation to the process outputs and typical product
documentation, and describe how integration of activities and processes in the software life cycle is
supported through development, review, approval, and maintenance of product documentation.

C.3.1 Documenting Software Requirements Management and Analysis Activities

C.3.1.1 Documenting Software Requirements Management Activities

The purpose of software requirements management is to establish a documented, common understanding
between the customer and the software project of the customer’s requirements that will be addressed by the
software project. Requirements management involves establishing and maintaining an agreement with the
customer on the requirements for the software project. Software requirements management includes the
following activities:

0

0 requirements analysis;
0 requirements documentation;
0 requirements change management: and
0

requirements gathering from customer interactions and system allocations;

requirements satisfaction survey from customer interactions.

The general approach to documenting software requirements management activities should follow that of
change/problem reporting and tracking. Each software requirement specification (or possible requirement)
gathered from customer interactions and system allocations should be put into an information base such as
used for change/problem reporting and tracking. This requirements gathering and documentation activity
provides a basis for the subsequent analysis activity that discriminates which statements and allocations
actually become a software requirement. The information to be recorded relative to definition of
requirements should include the decisions made during the process and the reasons behind why particular
alternatives have been taken versus why the others were rejected.

C- 14

.

Those software requirements that are retained from the analysis activity are documented in a Software
Requirements Specification and perhaps an Interface Requirements Specification. After inspection and
approval, the requirements documents are controlled in accordance with the organization and/or project
configuration management procedures. Any subsequent change that would add a new requirement or would
impact one or more of the requirements contained in the customer-approved requirements documents is
written up on a change proposal form by the person(s) initiating such a request. This action may take place
during the software development process or during fielded operational support. The only difference might
be in the level of formality followed for the requirements change process. The requirements change
management described in the following paragraphs is reasonably formal.

Any change proposals should be processed by the appropriate component of the software development team,
preferably the software configuration management activity. The change proposal form should exist
throughout the rest of the software’s applicable software life cycle. The software configuration management
activity should record the request and assign an identification by which the change can be tracked to
closure. The change proposal should be presented to a software configuration control board, or appropriate
approval authority, that will assign analysis responsibility (if required). Following such an assignment, the
responsible group should then arrange for and schedule analyses of :

0

0

0

potential approaches for its implementation;
benefit (need for and value) of such a change;
cost (effort and time) to make the change: and
potential risks (technical and schedule).

Since the customer-approved requirements documents have been baselined, the results of these analyses are
then evaluated by the software configuration control board. If the change request is approved by both that
body and the customer, then it should be documented and distributed as an official change to the
appropriate requirements document. If the proposal is not approved, then its status should be closed and the
originator advised of that action and the reason(s). The next decision for an approved change is
determination of how and when the change will be incorporated. In general, the possible alternatives are
either immediate implementation or assignment to a later version in which it will be implemented. When
the decision is for immediate implementation, the results of the analyses should be used to adjust the
baseline and actual schedules, milestones, resource allocations, and the project budget. A customer-initiated
change received during the software development effort that necessitates a change in the approved software
specifications document is normally considered a valid basis for changing the schedule, milestones, and cost
of the project. Requirement changes initiated for other reasons may not be allowed as a basis for such
changes in project management considerations. For systems having both hardware and software
requirements, software changes that might affect an interface may need to be approved by higher level
project configuration management boards that examine hardware/software interface impacts.

Perhaps the most important and most often forgotten part of the requirements management activity is to
include periodic surveys or some other mechanism for determining whether the customer is satisfied that
the software implements the customer’s requirements -- stated and implied. This activity allows for closure
of the requirements management activity by documenting lessons learned and providing continual input to a
root cause analysis activity that may lead to requirements management process improvement.

C.3.1.2 Documenting Software Requirements Analysis Activities

Documentation of software requirements analysis activities provides a record of the sources and/or reasons
for individual requirements that will:

be useful in gaining customer agreement on the final requirements document;
support design and trade-off analyses; and
assist in analyses related to reported problems and proposed changes.

System requirements are analyzed to identify those functions that must be performed to satisfy the objectives
of each functional area. Each function is described in terms of inputs, processing, outputs, and interface
requirements; subfunctions are identified and recognized as part of larger functional areas. To support

(2-15

such analysis the functions need to be arranged in a logical sequence so that specified operation of the
system can be traced in an end-to-end path. In addition to other methodologies supported by Computer-
Aided Software Engineering tools, seven approaches commonly used to perform such analyses include:

0 functional flow block diagrams;
0 dataflow diagrams;

N2diagrams;
0 time line analyses;

process decomposition;
0 data modeling; and
0 information modeling.

Requirements allocation is the further decomposition of system level requirements until a level is reached at
which a specific software routine or set of routines can fulfill each of the needed functional and performance
requirements. Some straightforward allocation of functional requirements can be made but the procedure
may involve the use of supporting analyses, simulations, and prototypes to allocate system level
requirements. Examples where additional analysis may be required include the allocation of memory usage
or performance timing limits to individual software components.

Another aspect of the documentation of the requirements analysis process is the need to provide traceability
analysis for each system requirement allocated to software to one or more lower level software requirements.
Such traceability analysis and decision rationale will ensure that the impact of changes to requirements at
any time during the software life cycle can be analyzed to determine its impact on the total system. The
decision rationale can be reviewed without the need to reconstruct analyses.

An example of a documentation form that can be used to capture requirements identification and allocation
is the Requirements Allocation Sheet (RAS) depicted in Figure C-5. The physical format of a RAS is
optional and should be tailored to meet the needs of the organization or project involved. In its most usable
format, it will have no physical form but will be implemented through an automated support tool. Such a
tool allows requirements to be identified and grouped as desired. In addition, such a tool allows individual
requirement descriptions to be expanded to sufficient detail to provide criteria for synthesizing and
evaluating alternative concepts and approaches. The use of an automated support tool also facilitates
problem/change analysis and requirements traceability modifications.

iystem
3eq No.

Requirements AHocatDn Sheet
Number:

Computer Software Component Identification Compuler Software Unit ldentificabon

System Funcbonal, Performance,
or Design Requirement

I
Requirement Allocated to

Software
Sofcware
Req No.

Figure C-5. Example Form for Allocation of Software Requirements

C-16

c

,

Allocated requirements are normally stated in terms such as:

0 purpose of the function;
performance parameters;

0 interface requirements/constraints;
0 design constraints;
0

0 user considerations; and
0

operating environment limits and concepts;

specific design characteristics created by the function such as input, output, control and
synchronization, performance values, allowable tolerances, and so forth.

Both qualitative and quantitative requirements resulting from an analysis can be identified on the
Requirements Allocation Sheet. Detail supplied on the RAS should be sufficient for direct use as design
trade-off criteria. Technical detail should be included to allow portions of one or more RASs to be extracted
and, in conjunction with data flows, assembled in the design document as an integrated design element.

C.3.2 Documenting Software Design Activities
In addition to the contents of the Software Design Description, the principal documentation that should be
recorded during design activities includes the decisions made during the process and the reasons behind
why particular alternatives have been taken and why the others were rejected. During prototype
development the principal reasons for decision making includes activities such as comparisons of:

new approaches versus proven concepts (e.g., use of graphic user interface (GUI) versus menu
trees, hardware versus software analog-digital conversions);
reuse of known software components versus new development;
commercial-off-the-shelf software versus new development; and
potential languages or different compilers/assemblers for a given language.

0

0

0

0

During the design phase the principal types of alternatives that are analyzed are selections such as:

0

database methods.

design approaches/algorithms for individual software components;
test methods for inclusion in the test documentation; and

In cases where trade studies are conducted as part of the decision-making process, those efforts should be
fully documented. The types of information that should be recorded include the following:

block and data flow diagrams developed for alternatives;
value estimates for timing (e.g., retrieval, execution, and storage times; external communications
times);
estimates for memory usage (e.g., random access, read only, direct access storage devices,
sequential access storage devices);
estimates of accuracy and tolerance capabilities versus performance differences;
accuracy/tolerances, timing, formats, and sources for potential external data input devices; and
trade study element descriptions for each option considered:
* objectives and requirements;
3 alternatives considered;
3 selection criteria used;
3 weights assigned to each of the selection criteria;
* utility functions developed and used; and
=+ results of sensitivity analyses.

C.3.3 Documenting Software Unit Coding, Unit Codes and Unit Testing Activities
Documentation of software unit coding, unit codes, and unit testing is somewhat informal and is normally
contained in the source code listing and/or the Software Development Folder. In the following discussions,

C-17

the term code unit (also known as a module) is intended to mean the smallest piece of separately compilable
code in a software system.

C.3.3.1 Documenting Software Unit Coding Activities
Documentation of software unit coding activities should be sufficient to satisfy the measurements required
as part of a software measurements program. This documentation should be kept in the unit's Software
Development Folder and might include:

0 description of:

labor hours expended through initial coding, compiling, and linking the associated code unit;
labor hours expended in unit testing the code:

j the results of, and/or a mark-up of the code listing used for, each attempt to compile or link
the code that resulted in detection of an error or defect:

* the root cause of the problem (e.g., programming error, defect in the design, ambiguous
software requirement, incorrect interface requirement);

3 action taken to correct problem: and
* labor hours required to complete rework and redo the compile or linkage.
calendar periods during which the above labor hours were expended and what type of activity was
performed during each of the periods:
size of the code unit (e.g., number of non-commented lines of source code) in the final debugged
and tested version:
description of each review performed on the code unit, including at least the following:

type of review (e.g., peer review, walk through, software inspection);
j date of the review;
j names of persons involved in the review:

copies of the reports generated prior to the review (e.g., inspection profile), during the review
(e.g., inspection defect list, marked-up listing), or after the review (e.g., inspection
management report, inspection metrics); and

* summary of the results of the review (e.g., inspection summary).

0

0

0

C.3.3.2 Documenting Software Unit Codes
Documentation of unit codes is normally in the form of "Header Blocks" at the beginning of each code unit
listing and the inclusion of comments/remarks internal to the code listing. Header blocks should contain at
least the following information relevant to the code unit:

0

0

0

0

name of software project under which the code unit is being reused or developed:
identification of all of the software requirements contained in the requirements documents that are
to be fully or partially satisfied within the code unit; and, if any are only being partly satisfied,
which parts are to be satisfied within the code unit;
name of the programmer(s) responsible for development and unit testing of the code unit;
a brief description of the processing or special algorithms used in the code unit:
version number of the code unit itself;
if the same code unit is used more than once within the software system, identification of the other
code units that are duplicates;
a description of any special limitations or error handling characteristics of the code unit: and
revision history, which contains date of latest revision to the code unit and a brief description and
date for each revision's set of changes.

Comment lines within the code unit should be extensive enough to provide an understanding of design
considerations and implementation methods for the lines of source code that follow each comment. One
good method often used is to:

C-18

.

.

0 describe the detailed design for the code unit in a program design language (PDL) or a high level
pseudo code; reference [IEEE990] describes a recommended practice for using Ada as a program
design language;
include the PDL version of the design in the code listing by converting each line of PDL to a
comment line and leaving it in the source listing immediately preceding the actual source code
that will implement the intent of the line of PDL code;
include additional comments as necessary to fully describe the function of each code segment;
if more than one of the requirements from the requirements documents is being completely or
partially implemented within a single code unit, then the comments within the code should
identify the segments of code that are designed to satisfy each of the requirements and what part
of each requirement that segment is to satisfy; this information will provide the traceability
linkage between requirements and code elements.

0

C.3.3.3 Documenting Software Unit Testing Activities
Two standards, references [IEEE829] and [IEEE1008], relate to the subject of software unit testing. The
reference [IEEE829] is most pertinent to the subject of documentation for unit testing. It identifies seven
test documents and defines their contents. The following two of those seven test documents are identified
by reference [IEEE1008] as the absolute minimum for process visibility into unit/module testing:

Test Design Specification which is made up of sections with the following titles:
Test-Design-Specification Identifier;
Features to be Tested;
3 individual features

combined features
Approach Refinements;
rj requirements coverage
3 design coverage
3 domain coverage
3 branch coverage
3 statement coverage
Test Identification; and
3 test cases
rj test procedures
Feature Passpail Criteria.

Test Summary Report which is made up of sections with the following titles:
Test Summary Report Identifier;

0 Summary;
3 number of faults found and corrected
3 statement of the final results of testing after the faults had been corrected
* how the unit was exercised for the testing
3 identification of all test documents associated with that unit

3 special conditions identified during the testing that were valid but were, in fact, enhancements
beyond the software requirements associated with that unit

rj any additional test cases that were found to be necessary to fully verify satisfaction of the
requirements

rj notation of the changes to requirements, design, coding, and/or testing documents that are
necessitated by the results of the testing activities and the fault corrections that were
necessary to attain satisfaction of the requirements

rj checklists that were followed and annotated during the testing

Variances:

Comprehensiveness Assessment;

C-19

3 execution trace reports
0 Summary of Results:

Evaluation:
0 Summary of Activities; and

3 total staffing level for each major testing activity
3 total machine time for each major testing activity
* total lapsed time for each major testing activity

0 Approvals.

C.3.4 Documenting Software Inspections and Walk Throughs
Software inspections and walk throughs should be documented. Defect data should be documented since it
can be analyzed to understand how the current software development processes lead to insertion defects.
Cost and benefits of the associated review process should be documented to justify use of the process.

C.3.4.1 Documentation of Software Inspections
Software Inspections are documented using the following four inspection documentation forms:

Inspection Profile Cover: This document is completed by the author of the software product that is to be
inspected. It is used as the cover sheet for the inspection package that is distributed to members of the
inspection team. The profile includes: project name, date, type of inspection, and size of the package. It
also contains a summary of any remaining open issues and indicates whether the inspection is a re-
inspec tion.

Inspection Defect List: During the inspection meeting the recorder completes the inspection defect list.
For each defect identified, the recorder enters a location, description, defect severity as major or minor, and
defect type (e.g., incomplete, ambiguous, logic, data). The recorder also lists questions that cannot be
answered during the inspection meeting. The author will use this form as the basis for correcting the
software product and the moderator will use it as a checklist for completing the inspection summary. The
author will complete the inspection defect list by noting the root cause (e.g., development activity that was
the source for the defect) and rework time for all defects and open issues identified during the inspection
meeting.

Inspection Metric Summary: After the inspection meeting, the recorder completes the inspection metric
summary. This summary contains a count for each of the defect types, severity, and root cause. This
information is most frequently used to evaluate the inspection process. This summary is updated to be
consistent with the rework and follow-up for the inspection defect list.

Inspection Summary: After the inspection meeting, the moderator completes this report. The Inspection
Management Report, along with the Inspection Summary, is used to provide management with information
regarding the inspection. The Inspection Management Report includes information regarding the total
amount of time spent in the inspection meeting and in preparation for the meeting. It also summarizes the
amount of effort required for the rework phase and the disposition of the inspection meeting.

Documentation from each software inspection should be maintained in the project library for possible
analysis across projects to improve the software inspection process.

C.3.4.2 Documentation of Software Walk Throughs
The documentation of software walk throughs is normally less formal than that of software inspections. At
a minimum, walk through documentation should contain the following information:

record of the time spent conducting the walk through and names of the participants;
copy of the marked-up version of the software product that was reviewed;
record of the contents of participant inputs: and
disposition of defects found during the walk through.

0

0

0

0

c-20

"1

Documentation from each software walk through should be maintained in the project library for possible
analysis across projects to improve the software walk through process.

C.4 Other Potential Product Documentation
The types of other potential product documentation depend upon the software being developed, who will be
using it, and how it will be used. Potential product documentation that could supplement the standard
management, requirements, design, and test documentation products are described in the following
subsections.

C.4.1 Traceability Documentation for Software and Interface Requirements
The objectives of traceability documentation are to:

ensure that each of the individual requirements identified in the System Requirements
Specification that are allocated to software are incorporated into the Software Requirements
Specification:
ensure that each of the individual requirements in the Software Requirements Specification are
incorporated into the Software Design Description;
ensure that each of the requirements in the Software Design Description are incorporated into the
appropriate source code listing;
ensure that each of the individual requirements identified in the Software Requirements
Specification are addressed in the Software Test Descriptions and Test Procedures;
provide a bi-directional trace of requirements between the software specification, software design,
code listings, and software test documents; and
facilitate evaluation of the impact of a proposed change on all levels of documentation other than
that document for which the need for change was first recognized.

Traceability can be documented through either manual or automated methods. Commercial-off-the-shelf
automated traceability tools are available and may be required for large-scale software development efforts.
However, for medium-sized or smaller software efforts a personal-computer-based database management
package may be used. Manual methods may be applicable for comparatively small efforts.

The more complex the system being developed or the larger the number of organizations or personnel
involved in the development, the greater the need for early implementation of accurate and complete
documentation that traces requirements from their source to their final tested, integrated, and installed
forms.

C.4.2 Software User, Installation, and Maintenance Documents
Reference [LEEE1063] addresses the subject of user manuals and also suggests a style manual might be
useful to complement the guidance provided in this standard. This IEEE standard does not break out user
documents into specific types such as user, installation, computer operator, and maintenance manuals.
Instead, it addresses issues such as: document sets (number of volumes) and usage modes (e.g., instructional
or reference). This standard is a good reference for determining the subject matter for user documents but
does not provide a template that can be followed to create a document for a specific audience. The
following subsections provide further guidelines for three audiences: users, installers and operators, and
maintainers.

C.4.2.1 Software User Manual
The Software User Manual should provide user personnel with instructions sufficient to execute the
software. It may be supplemented with on-line tutorials or on-line help capabilities. This document should
contain the following information:

an overview of the system and the role of the software within that system;
an overview of the user manual;

c-2 1

a listing of reference documents that may be of value to the user
the body of the document describes execution procedures and addresses the following:
+ Initialization - initial loading of the software on the computer on which it will be executed;
+ User Inputs - description of the user interface and input of user commands and data:
+ System Inputs - description of the inputs from the system to the software that may occur while

the software is in use and that may affect the software's interface with the user (e.g., inputs
from a remote sensor); formats, frequencies of input, allowable ranges, and units of measure
should be included where applicable.:

+ Termination - description of how to terminate the software operation and how the user can
determine whether normal termination has occurred:

+ Restart, Backup, and Recovery - description of the procedures to be used to restart, backup,
and recover the software;

+ Outputs - Description of expected outputs of the software, including error messages
a list of error messages: all error messages that can be output by the software, describe the
meaning of each error message, and define the action to be taken when each message appears;
notes and explanations: general information that aids in understanding of the users manual (e.g.,
background information) and a listing of all acronyms and abbreviations with their meanings
within the context of the user manual: and
appendices: used to provide information that is separated for convenience in document
maintenance (e.g., charts, classified data) and for coverage of details not appropriate for the body
of the document.

C.4.2.2 Software Installation and Transition Documentation
The Department of Defense separates such documentation into several documents such as a Software
Installation Plan, Software Transition Plan, and Software Product Specification. See references [MIL4981
and [IEEE1498]. The following is a list of potential information contained in such documentation:

installation instructions for the software and interfacindintegrating the software to other software
components, hardware, and communications links;
software support resources - identifies and describes the components of the software engineering
and test environments required to support the deliverable software; identifies the relationships of
the components and discusses the items required to modify the software, perform testing, and copy
the software for further distribution; further information may include the following:
3 software - identifies and describes all of the deliverable software and associated

documentation;
3 support software - identifies and describes the automated tools needed to support and maintain

the deliverable software;
+ hardware - describes the operating environment necessary to support the delivered software;
+ facilities - describes the facilities required to support the deliverable software and identifies

the purpose of each;
+ personnel - identifies the personnel required to support the deliverable software, including the

types of skills, number of personnel, security clearances, and skill levels: and
+ other resources - identifies any other resources that may be required to support the deliverable

software.
operations - describes the operations necessary to support the deliverable software: further
information may include the following:
3 software modification - describes the procedures necessary to modify deliverable operational

and support software and the procedures for accommodating revisions to commercially
available and reusable computer resources;

+ software integration and testing - describes the procedures necessary to integrate and fully test
all software modifications; includes procedures to identify portions of changes that need
further testing in the operational environment and to establish guidelines for determining,
developing, and verifying the amount of testing required:

c-22

^-

e

+ software generation - provides the information necessary to facilitate compilations or
assemblies of the deliverable software and instructions for loading, executing, or recording
the results of compilations or assemblies;

3 simulation - details the hardware, software, and procedures necessary for any required
simulation: and

3 emulation - details the hardware, software, and procedures necessary for any required
emulation.

training - describes the developing organization's plans for training of personnel to manage,
implement, use, and support the deliverable software; the schedule, duration, and location for all
training is included;
transition planning - describes the developing organization's plans for transitioning the deliverable
software to the user's operating environment; further information might include:
+ resources for both the developer and the user that will be necessary to carry out the transition;
+ schedules and milestones for the transition efforts; and
+ procedures for installation and checkout of the deliverable software.

0

0

C.4.2.3 Software Maintenance Document
The Software Maintenance Document provides information on how to support the software during its
operational life. Sometimes this information is contained in a Software Programmer's Manual. This
document should contain the following information as applicable:

system overview - states the purpose of the software system and the computer systems to which
this software is applicable:
software programming environment - describes the operating system($ of the host and target
computer(s) and other software involved in loading, compiling, and executing the deliverable
software: if the information described below is provided in a commercially available document,
that document should be referenced by title, number, and applicable paragraphs:
+ equipment configuration - description of the components and configuration of the host and

target computer systems, and communications linkages and networks;
+ operational information - description of the operating characteristics, capabilities, and

limitations of the host and target computer systems in terms such as:
- machine cycle times:
- word lengths;
- memory capacity and characteristics;
- instruction set characteristics:
- interrupt capabilities;
- modes of operation (e.g., batch, interactive, real-time, privileged, non-privileged);
- operational registers:
- error indicators;
- input/output characteristics: and
- special features.

=j compilations, assemblies, and linkages:
- description of the equipment (e.g., tapes, disks diskettes, other peripherals) necessary to

- identify, as applicable, by name and version number the editor, linker, link-editor,
perform compilations and assemblies on the computer system:

compiler, assembler, cross-compilers, and other utilities used, and reference appropriate
manuals describing their use: and

- highlight any special flags or instructions necessary for loading, executing, or recording
the results of compilations and assemblies.

programming information - description of the programming information relative to the host and
target computers: if the information described below is provided in a commercially available
document, that document should be referenced by title, number, and applicable paragraphs:

j programming features - descriptions of the computer's instruction set architecture in terms
such as:

- data representation (e.& byte, word, integer, floating-point)
- instruction formats and addressing modes;
- special registers and words (e.g., stack pointer, program counter, processor status

- control instructions (e&. branch, jump, subroutine and call instructions, privileged

- subroutines and procedures (e&, non-reentrant, reentrant, macro code routines,

- interrupt processing;
- timers and clocks; and
- memory protection features.

word);

information, and the operating modes);

argument lists, parameter passing conventions);

programming instructions - description, as necessary, of each instruction in the computer's
instruction set architecture in terms such as:

- use;
- syntax;
- condition codes set;
- execution time;
- machine-code format; and
- mnemonic conventions.

+ input and output control programming - description of the input and output control
programming of the computer system, including, as applicable, descriptions of:

- initial loading and verification of computer memory;
- serial and parallel data channels;
- discrete inputs and outputs;
- interface components; and
- device numbers, operational codes, and memory locations for peripheral equipment.

+ additional or special techniques - descriptions of additional or special programming
techniques with the computer system (e.g., concise description of the micro program control
section showing how the user instruction set is implemented via microcode);

+ programming examples - provide examples that demonstrate the programming features
described above for all categories of instructions on the specific computer system; and

+ error detection and diagnostic features - description of effort detection and diagnostic features
associated with the computer system, including conditions codes, overflow, and addressing
exception interrupts, and input and output errors status indicators.

C.4.3 Software Version Description Document
A Software Version Description Document identifies and describes a version of deliverable software. It can
be used to document an initial release version or an updated release version. It can also be used by the
developer to track and control versions of software released to different operational environments and users.
The version description information contained in the body of this document includes the following:

inventory of materials released - listing of all physical media (e.g., source code listings, tapes,
diskettes) and associated documentation that make up the new version; in addition, an
identification of all operational and support documents that are not part of the delivered package
but that are required to operate, load, or regenerate the delivered software;
inventory of the software components released - identification of all computer software elements
that are part of the delivered software, normally in the Same sequence as is used to organize the
source code listing for delivery;
descriptions of the changes from previous release -list of each of the changes from the previous
version; include with each change description a cross reference to the affected software
specifications;

C-24

I -

,

adaptation data - for the initial release of the software identify or reference all unique-to-site data
contained in the items being delivered: for subsequent versions, provide the information
necessary to identify changes to the adaptation data:
interface compatibilities - indicate other system and configuration items affected by the changes
incorporated in this version: not applicable to the initial version release:
bibliography of reference documents - for the initial version, list all documents pertinent to the
deliverable software: for subsequent versions, identify all changes to the listed documents:
installation instructions - provide the instructions, either directly or by reference, necessary to
install the version delivered:
possible problems and known defects - identify all possible or known defects in the delivered
version and any steps being taken to resolve those problems.

0

0

0

C.4.4 Firmware Support Manual
The Firmware Support Manual provides information necessary to load software or data into firmware
components of a system. It is equally applicable to read only memory, programmable read only memory,
erasable programmable read only memory, and other firmware devices. The principal components of this
document include:

firmware device information - describes the firmware devices and references commercially
available documents for the following types of information:

3 installation and repair procedures;
+ security: and
a limitations.
programming equipment and procedures - descriptions of the programming hardware,
programming software, and loading procedures necessary for programming the firmware devices:
and
vendor information - information supplied by the vendors for firmware device, programming
hardware, and programming software or references to the appropriate commercially available
documents related to those products.

device description(s):

C.5 Supporting Documentation
The following paragraphs discuss various other supporting documentation that may be useful for a software
project. This supporting documentation includes meeting minutes, lessons learned, briefings, project
reviews.

C.5.1 Technical Interchange Meeting Minutes
Technical interchange meetings take place with various combinations of the end-use customer, system
development team, and different elements of the development team. Minutes of those meetings need to be
recorded to document the decisions that were reached and agreed-to by the participant parties and to
document the future actions that are to be taken as a result of the meeting. The contents of meeting minutes
should include at least the following items:

date of the meeting;
names of persons attending the meeting;
description of business from previous meeting that was discussed:
description of each of the new business subjects discussed:
description of the outcome of each old and new business item discussed: and
list of action items that includes at least the following:

description of the action required and the results expected;
a name(s) of the person(s)/organization(s) responsible for completing the required action:
* specification of the date/time by which the action needs to be completed: and

C-25

+ identification of the recipients to whom the completed action results will be distributed.

C.5.2 Lessons Learned
The objectives of recording lessons learned are to:

0

document the successes and failures in such a way as to make the results of past efforts available
for use in improving the processes used in software development and maintenance: and
provide a record of the overall improvements in software development activities.

In general, the documentation of lessons learned has been in a free-form format. This approach results in a
collection of information that is difficult to use later as reference material. Therefore, a standardized format
that will facilitate cross referencing within the project and across multiple projects should be developed
One approach might be to develop a form that can be used to record individual lessons. Another might be
to use a personal computer- or workstation-based database management system. The following is a list of
potential paragraph headings for use in recording lessons learned

0

0

0

0

0

0

0

c.5.3

success/problem - the entry here must be a single word "Success" or "Problem":
key words - one or more key words must be included to facilitate grouping lessons learned:
examples of key words might include: personnel, software inspection, root cause, defect, failure:
lesson learned - a free-form paragraph on the lesson learned that should address/include one or
more of the words from the key words list:
stage - the applicable development stage or phase in which the lesson was learned: should be filled
in by selecting from a pre-defined list of stages/phases:
description/action - a free-form paragraph with a detailed description of the action taken as a
result of the lesson learned that should address/include one or more of the words from the key
words list:
recommendation - a free-form paragraph on recommendations (such as improvements) that, if
accomplished, would decrease similar problems or make similar successes more likely in future
projects: and
degree of importance - typically a single word such as: high, medium, low, major, minor.

Briefing Documents
Briefings will often be required as part of a software development project. Individuals presenting such
briefings will normally develop briefing materials to support their presentations. The software project
manager should collect a copy of such support materials for inclusion in the archives for the project. Such
an archival document will be of more use when it has been annotated with all pertinent comments that were
brought up by either the presenter or others attending the meeting. In addition, the briefing documents
should include the names and organizations of those who attended the briefing and any action items that
resulted. Action items should be documented as follows:

0

0

0

description of the action required and the results expected:
name(s) of the person(s)/organization(s) responsible for completing the required action;
specification of the datehime by which the action needs to be completed and
identification of the recipients to whom the completed action results will be distributed.

C.5.4 Project Review Documents
Formal project reviews such as Preliminary Design Reviews, Critical Design Reviews, and Software Test
Readiness Reviews may also take place during a software development effort. Typically, such formal
reviews will include one or more briefing-like presentations and a number of discussions. As a result,
documentation of such formal reviews will normally be a combination of the information described above
for Technical Interchange Meetings and Briefing Documents.

C-26

Appendix D: Document Set Selection for Example Projects

PROJECT
Project 1

This appendix provides examples of how to select a project document set using the risk scoring and
selection guidelines outlined in Chapter 3, Figures 3-2 and 3-3. These examples represent a broad
spectrum of software development projects likely to occur within Sandia National Laboratories. A
summary of the example projects is provided in the matrix below.

DESCRIPTION
A War Reserve (WR) software development project that provides a secure recode
capability to all nuclear weapons

Project 2 A non-WR project related to an internal Sandia information system software
development project

Project 3

Project 4

Project 5

Project 6

A small two-person research project

A software support project requiring on-going support for a large software program
developed over the last 20 years

A project requiring purchase of commercial software to support an information system
architecture

A customer-specific Work For Others (WFO) program with software developed in-house
until technology can be supported through the technology transfer program

Project 7 A WFO program developed for an external customer involving a command and control
system that will be a totally new development

D.l Project 1: WR Development
Description: I have a WR software development project. Use control software is being developed for a
state of the art system that will provide a secure recode capability to all nuclear weapons (US and Allies).
Sandia experience in this area is the best possible. Previous project software will be reused but at least
30K new non-commented source lines of code are expected to be developed. What documentation set is
appropriate for this project?

Risk Factor
1. Process Risk

acquisition
development
use
support

2. SizeRisk
low: < 1K NCSLOC
medium: 1K-20K NCSLOC
high: 20K-100K NCSLOC

I xhigh: > l00K NCSLOC
3. CostRisk

low: < $25K
medium: $25K - $50K
high: $50K - $100K
xhigh: $100K - $1,000K
xxhigh: > $1,000K

none
internal

4. Customer Risk

W R or non-WR
Research or non-Research

WR or non-WR
WFO or non-WFO
Research or non-Research

external

5. Life Cycle Risk
Prototype or Production
Expected Lifetime
Activities of Concern

6. Support Environment Risk
Platform
Automated Tool Support
Personnel Skill Mix

I

~~

TyDe

development

high

xxhigh

external
WR

production
long
all

LAN workstation
intermediate
medium experience

score

100

100

500

100
100

100
100
170

50
50
20

Corn men ts
DOE project: ultimate customer is DoD;
Engineering Procedure EP401045 applies

Approximately 40K NCSLOC can be
reused, but it is estimated that 30K
NCSLOC of newly developed 'C'
language code will be required.

Estimate is for 155 person months labor
over a period of 17 calendar months.
Total cost will be approximately $2.2M.
Due to the level of security required, an
additional factor of 1.5 pushes the
estimated cost to $3.3M.
This WR project is for an external
customer and is key to Sandia's future
business base in the area of nuclear
weapons.

This is a production development effort
with products that are expected to have a
fairly long lifetime (certainly more than
five years and up to twenty years). All
life cycle activities will be performed,
including any future software support for
the products.
The development and support
environment will be a LAN of SUN
workstations using a UNIX-based system.
The target environment will be a
combination of COTS PCs and special-
purpose hardware for weapons interface
designed by Sandia. A Motorola
processor will be in the special-purpose
hardware.

D-2

.- 7. Historical Experience Risk
Experience Level
Personnel Stability

8. SNLRisk
Operational Reliability
Customer Satisfaction

9. Other Risk Areas
Security
Safety
Use Control

I Totals

Risk Range:
L o w < 5 0 0 : Minimalset
Low 500-999: BasicSet
Medium 999 - 1499: Small Set
High 1500 - 1999: Medium Set
xHigh Risk > = 2000: Large Set

high
high

high
high

high
high
high

xhigh risk

10
10

500
200

100
100
100

2410

~ ~~ ~~~ ~

Sandia is the only experienced software
developer in this area. All personnel
assigned to the effort are expected to be
available during the majority of the
software's life cycle.
This project is an external WR project
that is key to Sandia's future business
base in the area of nuclear weapons.
Operational Reliability of the software is
expected to be very high. Customer
satisfaction is critical to Sandia's future in
this area.

Need Software Security/Safety Plan.
High level of security, safety, and use
control is required. Refer to project
Classification Guide and Use Control
Theme documentation for more
information.
Select Large Document Set:

SDP, SQAP, SCMP, SRS, SDD, CODE,
SSTP, S S M P , SVVP, SDF

SSP since safety/security is an issue
SUG since user interface is critical
QP/QER since project is WR
Use Control Theme (reference)
Classification Guide (reference)

Plus:

D.2
Description: I have an internal Sandia information system software development project. The customer(s)
are all internal Sandia personnel who use the personnel information system. The software to be developed
will enable the financial and project management information databases to be linked with the personnel
information system so that project managers across all Sandia organizations can maintain and update on-
line project data for personnel assigned to their projects. A project manager interface for data entry and
reporting will be part of the project. It is expected that only a small amount of software will need to be
developed using modem fourth generation database query and user interface language capabilities. The
adjusted function points (inputs, outputs, inquiries, files, interfaces plus adjustment factor) to be developed
have been estimated at 816. Documentation exists for the current systems and their existing software (the
main system software has been commercially purchased, but a significant amount of user software has been
developed internally). What documentation set is appropriate for my project?

Project 2: Non-WR Information System Development

~ _ _ _

Risk Factor
1. Process Risk

acquisition
development
use
support

2. SizeRisk
low: < 1K NCSLOC
medium: 1K-20K NCSLOC
high: 20K-100K NCSLOC
xhigh: > lOOK NCSLOC

low: e $25K
medium: $25K - $50K
high: $50K - $100K
xhigh: $100K - $1,000K
xxhigh: > $1,000K

none
internal

3. CostRisk

4. Customer Risk

WR or non-WR
Research or non-Research

WR or non-WR
WFO or non-WFO
Research or non-Research

external

5. Life Cycle Risk
Prototype or Production
Expected Lifetime
Activities of Concern

Type

development

medium

Score I Comments
I Internal SNL project; direct customers are

100
the personnel-systems group, but indirect
customers are all SNL project managers.

50

xhigh
200 I

internal
non-WR

50
10

production
long
all

Approximately 816 function points of
newly developed Fourth Generation
Language code will be required. (Falls
into the medium size risk range.)

Estimate is for 35 person months labor
over a period of 10 calendar months.
Total cost will be approximately $300K.

100
100
170

This non-WR project is for an internal
customer and is key to Sandia's
information architecture and capability to
support the management of future
projects in accordance with government
and industry standards.

This is a production development effort
with products that are expected to have a
fairly long lifetime (certainly more than
five years and up to ten years). All life
cycle activities will be performed,
including any future software support for
the products.

D-4

a

6. Support Environment Risk
Platform
Automated Tool Support
Personnel Skill Mix

7. Historical Experience Risk
Experience Level
Personnel Stability

LAN workstation
integrated CASE
experienced

50
10
10

high
medium

8. SNLRisk
Operational Reliability
Customer Satisfaction

low
medium

10
100

9. Other Risk Areas
None I

Totals

Risk Range:
xLow <500: Minimalset
Low 500 - 999: Basic Set
Medium 999 - 1499: Small Set
High 1500 - 1999: Medium Set
xHigh Risk > = 2000: Large Set

low risk
Note: since the risk
score is so close to
the medium risk
boundary, it may be
useful to evaluate in
more detail whether
some of the
Medium Document
Set might be

990

I appropriate.

The development and support
environment will be a LAN of DEC
workstations linked to the production
VAX machine containing the operational
system and networked to Sandia’s internal
secure network. The target environment
will be a combination of COTS PCs
linked to the internal secure network and
layered with appropriate system support
software and the project management
application support software.
Sandia is very experienced in developing
applications software in this area. Some
junior level personnel have been leaving
the organization to broaden career
opportunities. This is expected to
continue over the life of the effort.
Operational Reliability of the software
and Customer Satisfaction are expected to
be good, but are not critical to human life
or expensive property. Workarounds
typically exist for any defects.

Select Small Document Set:

Plus:
SDP. SRS, CODE, SSTP, SDF

SUG since user interface is important:
and any applicable vendor documents
for the project manager stations

Note: it is expected that existing software
configuration management will be used
so current plans and tools will be
sufficient for the new S/W.

D.3 Project 3: Small Research Development

none

prototype
short
concept definition,
implementation,
installation,
operation

I

Description: I have a small two-person research project that requires the development of a small amount of
software to support some of the research. The software is primarily to support analysis and is not intended
to be used by anyone else, internally or externally. The software will be primarily applied mathematics
code. The customer(s) are just the two principal investigators, although the research results are expected to
be of interest to our entire department that specializes in robotics research. If the research results are as
positive as we expect, then future software will need to be developed to support a larger production version
of the products that will be prototyped. What documentation set is appropriate for my project?

Risk Factor
1. Process Risk

acquisition
development
use
supDort

2. SizeRisk
low: < 1K NCSLOC
medium: 1K-20K NCSLOC
high: 20K-100K NCSLOC
xhigh: > lOOK NCSLOC

low: < $25K
medium: $25K - $50K
high: $50K - $1WK
xhigh: $100K - $1,000K
xxhigh: > $1,000K

none
internal

3. CostRisk

4. Customer Risk

WR or non-WR
Research or non-Research

WR or non-WR
WFO or non-WFO
Research or non-Research

external

5 . Life Cycle Rsk
Prototype or Production
Expected Lifetime
Activities of Concern

TyDe

development

low

low

Score

100

Com ments
Internal SNL project; only direct
customers are the two principle
investigators.

10

10

Less than 1,OOO NCSLOC of Small Talk
software source code is expected to be
developed.

Estimate is for 3 person months labor
over a period of 12 calendar months.
Total cost will be approximately $20K.

10

10
10
50

This project is an internal SNL project
with essentially no customers.

This is a prototype development effort
with products that are expected to have a
very short lifetime (certainly c 1 year).
Requirements are fairly well understood,
but emphasis will be on accuracy of
implementation. Some concept is
needed, but very little design or formal
test is needed since the algorithms are all
understood. Test will be mostly at the
system level.

D-6

6. Support Environment Risk
Platform

Personnel Skill Mix
Automated Tool Support

7. Historical Experience Risk
Experience Level
Personnel Stability

8. SNLRisk
Operational Reliability
Customer Satisfaction

PC workstation 10
integrated CASE 10
experienced 10

medium 20
high 10

low
low

10
10

9. Other Risk Areas I I
Totals

Risk Range:
XLOW < 500: Minimal Set
Low 500 - 999: Basic Set
Medium 999 - 1499: Small Set
High 1500 - 1999: Medium Set
xHigh Risk > = 2000: Large Set

xlow risk 280

The development and support
environment will be a PC workstation
that will be networked to the laboratory
robotics system being developed.
Personnel are experienced with the
current Small Talk environment and have
developed interfaces and prototypes
before in this environment.
Principal investigators are very
experienced in developing applications in
this area, although they do not consider
themselves to be software developers. No
personnel turnover is anticipated.
Operational Reliability of the software
and Customer Satisfaction are expected to
be very low. Workarounds will exist for
any defects.

Select Minimal Document Set:

Note: The SDF should contain a brief
description of the project plan, and a one-
two page statement of the requirements
for the software to be developed. The
algorithms to be implemented should be
included in a separate section of the SDF.
A lessons learned section in the SDF
would be appropriate.

CODE, SDF

D.4
Description: I have a software support project that requires the on-going support of approximately 300K
non-commented source lines (total of 400K with comments) of FORTRAN simulation and user command
language code. The code simulates the flow of various gases and fluids through different geological strata
and is being used by several environmental support projects to make critical decisions that will affect
future Sandia and other industry support projects. The code has been developed over a period of over 20
years, and support activities include correcting any defects found in the code, enhancing the code to
provide new capabilities to support newly defined gases and/or fluids & geological strata, operating and
using the code in a project analysis support role, and writing professional papers to interface with other
researchers in this area. The code algorithms are very well documented in a mathematical code design
specification, which matches fairly well the software implementation, but there is no software design
documentation. Although there is no formal software requirements specification, there is a concept
document that describes in detail the intended applications for the code, and this document is kept
reasonably current with lessons leamed on any existing projects. The interface to the code for user
parameter inputs and analysis outputs is documented in a user interface document that is constantly being
updated to keep it current with changes to the code. Although there are several persons who use the code
in the department, there are only two of us that really know the algorithms and their implementation in the
software, and we are the only two who provide actual software change support. I've had some training in
modem software engineering techniques but consider myself primarily a hydrology physics scientist who
develops software simulations to support my primary area of interest. What documentation set is
appropriate for my project?

Project 4: Support of Existing Simulation Code Software

Type

support

medium

Risk Factor
I . F'rocessRisk

acquisition
development
use
support

2. SizeRisk
low: c 1K NCSLOC
medium: 1K-20K NCSLOC
high: 20K-l00K NCSLOC
xhigh: > l00K NCSLOC

low: c $25K
medium: $25K - $50K
high: $50K - $fOOK
xhigh: $100K - $1,000K
xxhigh: > $1,000K

none
internal

3. CostRisk

4. Customer Risk

WR or non-WR
Research or non-Research

WR or non-WR
WFO or non-WFO
Research or non-Research

external

Score

50

50

xhigh

internal

research
external
WR
WFO

200

10
100
100
100

Comments
Internal SNL project; direct external
customers on both WR and non-WR work
for others projects

Less than 1,OOO NCSLOC of FORTRAN
developed/changed per year, but software
source code to be supported is very large
for only a one/two person staff.

Estimate is for 1.5 persons labor each
year. Total cost will be approximately
$200K.

This research project is for both internal
SNL and external customers. Probably
the more important aspect to consider
here is the external customer that is
primarily WR related.

D-8

.

c

5 . Life Cycle Risk
Prototype or Production
Expected Lifetime
Activities of Concern

6. Support Environment Risk
Platform
Automated Tool Support
Personnel Skill Mix

7. Historical Experience Risk
Experience Level
Personnel Stability

8. SNLRisk
Operational Reliability
Customer Satisfaction

9. Other Risk Areas
Lack of Documentation
Lack of Backup Personnel
Sandia Proprietary Software

production
long
installation,
operation,
support

LAN workstation
intermediate set
experienced

medium
low

low
medium

medium
medium
medium

100
100
60

50
50
10

20
50

10
100

50
50
50

This is a production support effort with
products that are expected to have a very
long lifetime (certainly > 5 years).
Concept is well understood, requirements
are partially documented, very little
software design exists, a common
regression test suite is used for testing,
but no test casehesults document exists -
just previous executions. Code has some
comments that have been added as
changes were made to the code.
The support environment is a SUN
workstation linked into the Sandia
supercomputer network (code operates on
CRAY level machines). Personnel are
experienced with the current environment
but only a few CASE tools are used, such
as source code management, compilers,
some graphic support, etc.
Principal investigators are very
experienced in developing applications in
this area, although they do not consider
themselves to be software developers.
Unfortunately, the two individuals who
know the most about the code are
planning to retire within the year. They
will be replaced by much less
experienced personnel.
Operational Reliability of the software
and Customer Satisfaction are expected to
be very good. Workarounds generally
exist for any defects, but the accuracy of
results is very important for the customer
decision-making process.

Support documentation is minimal.
Key personnel can not be easily replaced.
Software requires proprietary controls.

Risk Range:
L o w ~ 5 0 0 : Minimalset
Low 500 - 999: Basic Set
Medium 999 - 1499: Small Set
High 1500 - 1999: Medium Set
xHigh Risk > = 2000: Large Set

medium risk 1310

-

Select Small Document Set:

Plus:
SDP, SRS, CODE, SSTP, SDF

SUG: since user interface is critical
SDF should contain a brief description
of each project plan and a one-two page
statement of the requirements the
software is supporting. The
implemented algorithms documentation
should be included in a separate section
of the SDF. The regression test should
be documented with a results section in
the SDF. A lessons learned section in
the SDF would be appropriate for each
project.

Note: To reduce some of the risks, it
would be advisable to reverse engineer
the software code through use of some
modem tools to create data dictionary and
flow diagram design information. It
would also be advisable to re-organize the
current algorithm specification
documentation into a good SRS.

D-10

.

D.5 Project 5: Purchased Information System Software
Description: I have a project that requires the purchase of commercial software that will be used to
support the applications of my department with involvement of other internal Sandia departments. The
software is primarily to support the new information system architecture that will be developed within
Sandia over the next decade. The commercial vendor will be the support agent. It is expected that this
software will cost in excess of $1M. What documentation set is appropriate for my project?

low: < 1K NCSLOC
medium: 1K-20K NCSLOC

low: < $25K
medium: $25K - $50K
high: $50K - $100K

none
internal

WR or non-WR
Research or non-Research

WR or non-WR
WFO or non-WFO
Research or non-Research

external

5 . Life Cycle Risk
Prototype or Production
Expected Lifetime
Activities of Concern

internal
non-WR

production
long
concept,
installation,
operation

Score

10

10

10

500

50
10

I 0 0
100
30

~~

Com m en ts
Internal SNL project: direct customers are
internal SNL departments that use the
primary SNL information systems.

Although the software is very large,
Sandia will have no development or
support responsibility, so the size is not
really a direct factor.

The cost of commercial soflware of this
magnitude requires DOE notification and
certain internal Sandia processing based
on DOE Orders and internal Sandia
policies.

This non-WR project is for internal SNL
customers. It could be argued that the use
of the information systems for WR work
could imply some WR impact. And,
since the results of information systems
supports external customer use, it could
also be argued that some customers are
external.

This is a production acquisition effort
with products that are expected to have a
very long lifetime (certainly > 5 years).
It will be necessary to work on the
operational concept analysis with the
proposed vendor to ensure the vendor's
product will support Sandia's intended
applications (either directly or through
product modifications). It will also be
necessary to enforce certain vendor
documentation delivery to support
Sandia's installation and operational use
of the software.

6. Support Environment Risk
Platform
Automated Tool Support
Personnel Skill Mix

7. Historical Experience Risk
Experience Level
Personnel Stability

8. SNLRisk
Operational Reliability
Customer Satisfaction

9. Other Risk Areas
Vendor Support
Vendor S / W Processes

I

LAN workstation
integrated CASE
medium experience

medium
medium

medium
high

medium
high

10
10
20

20
20

100
200

50
100

The vendor development and support
environment will be a LAN workstation
that will be networked to the laboratory
so that updates and direct vendor support
can be provided to the Sandia on-site
staff. Sandia personnel are somewhat
experienced with the vendor's product
and will receive extensive training on the
installation/update and operation
procedures.
Vendor is well-established and capable of
providing extended support to the
commercial product. Sandia has good
experience with information systems and
is committed to providing a state-of-the-
art information arc hi tec ture
(communications, hardware platform, and
software) for the laboratories and its
interface to external customers. There is
not expected to be any unusual change is
personnel stability over the exwcted
lifetime of this project.
Operational Reliability of the software
and Customer Satisfaction are expected to
be high. Workarounds will exist for any
defects, but the software is key to future
evolution of the information architecture
and must provide high reliability and
internal Sandia customer satisfaction.

Vendor capabilities should be
documented through a vendor survey, tc
provide some assurance that the risks in
these two areas are not too high.

D-12

.-

e

Totals

Risk Range:
xLow < 500: Minimal Set
Low 500 - 999: Basic Set
Medium 999 - 1499: Small Set
High 1500 - 1999: Medium Set
xHigh Risk > = 2000: Large Set

medium risk 1350

-

Select (Special) Small Document Set:
Software Products: CODE, SUG, SDF
variation (see below)

Software Acquisition Plan
System Specification Requirements
Software Vendor S w e y
Installation/Operation Manuals
Software Support Folder (SSF)
(variation on SDF)

Note: This project requires that Sandia
develop an acquisition plan as the
customer of the software supplier. This
plan should account for the development
of a systernhoftware specification
requirements document that can be used
to determine whether vendor's software
will satisfy Sandia's operational concept
for its use. A software vendor survey
should be used to verify that the vendor's
software processes and products satisfy
the medium to high risk category. The
SSF should contain: a brief description of
the project plan: a concept of operation
description for the software: and
references to the system specification
requirements document, software vendor
survey document, and vendor survey
results.

Plus:

D.6
Description: I have a Work For Others contract with SEMATECH, the semiconductor equipment
consortium, that has a specific task to develop software for a Reliability Analysis Program (RAP). This
program will be used by SEMATECH consortium members to build reliability block diagrams and conduct
limited reliability and fault tree analyses for member fabrication laboratories and for member
semiconductor equipment suppliers. The software will be developed in-house and supported until the
technology can be transferred to an outside support industry through a technology transfer program. It is
estimated that most of the software will be new although the algorithms and application technology is well
understood and used by Sandia. The development and target platform will be a standalone PC. It is
estimated that approximately 15K non-commented source lines of code will be developed in the "C"
programming language. What documentation set is appropriate for my project?

Project 6: Customer Specific WFO - SEMATECH

Score

100
10
50

Risk Factor
1. Process Risk

acquisition
development
use
support

2. SizeRisk
low: < 1K NCSLOC
medium: 1K-20K NCSLOC
high: 20K-100K NCSLOC
xhigh: > l00K NCSLOC

low: e $25K
medium: $25K - $50K
high: $50K - $100K
xhigh: $100K - $1,000K
xxhigh: > $1,000K

none
internal

3. CostRisk

4. Customer Risk

WR or non-WR
Research or non-Research

WR or non-WR
WFO or non-WO
Research or non-Research

external

5 . Life Cycle Risk
Prototype or Production
Expected Lifetime
Activities of Concern

6. Support Environment Risk
Platform
Automated Tool Support
Personnel Skill Mix

Comments
Internal SNL WFO project; direct
customer is SEMATECH; indirect
customers are the semiconductor
companies who will use the product as
well as SNL developers who will support
the use of the product.
Less than 20,000 NCSLOC of "C"
language code will be required.

Experience Level

100
50

170

10
50
20

50
10

Type

This is a production development effort
with products that are expected to have a
medium lifetime. Full life cycle of
activities is required, including support.
The development and support
environment will be a standalone PC
workstation. Some CASE tools will be
available. Personnel are experienced with
reliability applications and have some
software development experience.
Principal investigators are experienced in
reliability applications, but not in
developing software for this area.

development
use
support
~~

medium

xhigh

external

WFO

production
medium
all

PC workstation
intermediate set
medium

low
high

200

100

100

Estimate is for 60 person months labor
over a period of 12 calendar months for
the development, and approximately 0.5
persons per year for a two year support
period. Total cost will be approximately
$700K.
This WFO project is primarily for
external customers.

D- 14

8. SNLRisk
Operational Reliability
Customer Satisfaction

9. Other Risk Areas
Sandia Proprietary Software
SEMATECH Proprietary Data

Totals

Risk Range:
L o w ~ 5 0 0 : Minimalset
Low 500-999: BasicSet
Medium 999 - 1499: Small Set
High 1500 - 1999: Medium Set
xHigh Risk > = 2000: Large Set

low
medium

medium
medium

medium risk

10
100

50
50

1280

Operational Reliability of the software is
not critical, workarounds will exist fol
any defects. Customer Satisfaction
should be reasonably good or the tool will
not be used.

Software requires proprietary controls.
SEMATECH company data may require

Select Small Document Set:

Plus:

proprietary controls.

SDP, SRS, CODE, SSTP, SDF

SUG: since user interface is critical
SSMP: since continued support is
required

Note: The algorithms to be implemented
should be included in a separate section
of the SDF. A lessons leamed section in
the SDF would be appropriate.

D.7 Project 7: Internally Developed for External Customer WFO - Ada
Description: I have a software development project for an external DoD customer on a Work For Others
contract. The software is a command and control application that will be totally new development. The
estimate is for approximately 250K non-commented source lines of code developed in the Ada
programming language using an Object-Oriented development methodology with a fully integrated CASE
tool set. Personnel are experienced with command and control applications, but only recently became
trained in the use of the Ada language and Object-Oriented methodologies. What documentation set is
appropriate for this project?

xhigh

xxhigh

external

Risk Factor
1. Process Risk

acquisition
development
use
support

2. SizeRisk
low: < 1K NCSLOC
medium: 1K-20K NCSLOC
high: 20K-100K NCSLOC
xhigh: > l00K NCSLOC

low: e $25K
medium: $25K - $50K
high: $50K - $100K
xhigh: $100K - $1,000K
xxhigh: > $1,000K

none
internal

3. CostRisk

4. Customer Risk

WR or non-WR
Research or non-Research

WR or non-WR
WFO or non-WFO
Research or non-Research

external

5. Life Cycle Risk
Prototype or Production
Expected Lifetime
Activities of Concern

200

500

100

Score

development

LAN workstation
integrated CASE
medium experience

50
10
20

I loo
WFO

production
long
all

100
100
170

6. Support Environment Risk
Platform
Automated Tool Support
Personnel Skill Mix

Com m en ts
DoD project: Engineering Procedure
EP401045 might also apply. MIL-STD-
498 applies. Customer Data Item
Descriptions apply per contract.

About 250,000 NCSLOC of newly
developed Ada language code will be
required.

Estimate is for 2000 person months labor
over a period of 72 calendar months.
Total cost will be approximately $22.2M.

This WFO project is for an external
customer and is key to Sandia's future
business base in the area of non-nuclear
DoD weapons business.

This is a production development effort
with products that are expected to have a
fairly long lifetime (certainly more than
five years and up to twenty years). All
life cycle activities will be performed,
including any future software support for
the products.
The development and support
environment will be a LAN of SUN
workstations using a UNIX-based system.
The target environment will be a
combination of LAN Workstations and
existing special-purpose hardware for
weapons communications interface.

D-16

7. Historical Experience Risk I I I Sandia has wide experience with the
Experience Level
Personnel Stability

8. SNLRisk
Operational Reliability
Customer Satisfaction

medium
medium

high
high

20
20

500
200

command and control applications, but
only minimal experience with Ada and
DoD software development efforts.
This project is an external W R project
that is key to Sandia's future business
base in the area of non-nuclear weapons.
Operational Reliability of the software is
expected to be very high. Customer
satisfaction is critical to Sandia's future in

9. Other Risk Areas
security
Safety

Customer Proprietary Data
Totals

Risk Range:
L o w ~ 5 0 0 : Minimalset
Low 500 - 999: Basic Set
Medium 999 - 1499: Small Set
High 1500 - 1999: Medium Set
xHigh Risk > = 2000: Large Set

high
high

medium
xhigh risk

100
100

3
2440

Need Software Security/Safety Plan.
High level of security and safety is
required.
Protection of customer data is required.
Select Large Document Set:

SDP, SQAP, SCMP, SRS, SDD, CODE,
SSTP, S S M P , S W , SDF

SSP since safety/security is an issue
SUG since user interface is critical
WR qualification documentation, since
project is so large; any DoD contractual
documentation not already covered

Plus:

.-

I

D-17

Blank Page

D-18

.I

Appendix E: Documentation Standards and Contacts
The following paragraphs contain brief descriptions of documentation references and standards whose
content provided a basis for this volume of the Sandia Software Guidelines. Sources for these standards and
document template outlines include the International Standards Organization (ISO), Institute of Electrical
and Electronic Engineers (IEEE), and Department of Defense (DoD). The following list of contacts,
addresses, and phone numbers will probably change but should provide a starting place for obtaining
information on the latest status of documentation standards.

I S 0 standards:
I S 0 Central Secretariat
Case postale 56, CH- 12 1 1
Geneve 20, Switzerland
International Telephone Number: (022) 749-01- 11
International Facsimile Number: (022) 41-22-733-34-30

IEEE standards:
IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08854- 133 1
US Telephone Number (General Information): 800-678-4333

DoD standards:
Space & Naval Warfare Systems Command

245 1 Crystal Drive (CPK-5)
Arlington, VA 22245-5200
US Telephone Number: 703-602-4491

SPAWAR 10-12

Defense Quality and Standardization Office
5203 Leesburg Pike, Suite 1403
Falls Church, VA 22041-2466
US Telephone Number: 703-756-2340

Other possible contacts for software documentation standards:
American National Standards Institute (ANSI)
1430 Broadway
New York, NY 10018

American Society of Mechanical Engineers (ASME)
Order Department
22 Law Drive
P.O. Box 2300
Fairfield, NJ 07007-2300

Software Technology Support Center
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
US Telephone Number: 801-777-7989

E- 1

E.l
The following list identifies some of the international standards related to software documentation:

International Standards Related to Documentation

0 Guidelines for the Verification and Validation of Scientific and Engineering Computer Programs
for the Nuclear Industry, A N S 10.4, a 43-page document published by the American Nuclear
Society in 1987 [ANS10.4];
Information Processing - Guidelines for the Documentation of Computer-Based Application
Systems, IS0 6592, First Edition, a 20-page standard published by the International Organization
for Standardization (ISO) in 1985 [ISO6592];
Information Processing Systems - User Documentation and Cover Information for Consumer
Packages, I S 0 9127, First Edition, an 11-page document published by the IS0 in 1988 [ISO9127];
and
Information Technology - Guidelines for the Management of Software Documentation, IS0
TR9294, First Edition, a 12-page document published by the IS0 in 1990 [ISO9294].

0

0

0

E.2
The following paragraphs identify and briefly describe the IEEE standards and guides related to software
documentation. The synopsis provided for each of the listed references are extracted from the "IEEE
Standards Collection, Software Engineering," 1994 Edition [IEEEstds], or the standard itself if not
published in this reference.

IEEE Standards Related to Software Documentation

E.2.1 IEEE Standard for Software Quality Assurance Plans [IEEE730]
This standard has legal liability as its basic rationale. It is directed toward the development and
maintenance of critical software, that is, where failure could impact safety or cause large financial or social
losses. The orientation is toward delineating all of the planned and systematic actions on a particular
project that would provide adequate confidence that the software product conforms to establish technical
requirement. This standard establishes a required format and a set of minimum contents for software
quality assurance plans. It should be noted that the "Example Software Quality Assurance Plan" contained
in Appendix A reference [SSGvl] is based on this standard, reference [IEEE730].

E.2.2 IEEE Standard for Software Configuration Management Plans [IEEE8281
The standard identifies requirements for configuration identification, configuration control, configuration
status accounting and reporting, and configuration audits and reviews. The implementation of those
requirements provides a means by which the evolution of the software product items are recorded,
communicated, and controlled. This provides assurance of the integrity and continuity of the software
product items as they evolve through the software development and maintenance life cycle.

The last paragraph under section 1.1 of reference [SSGV~], states " ... this volume provides information that
should supplement the content of related IEEE standards ... and assist the user in the application of these
nationally recognized standards to their particular projects."

E.2.3 IEEE Standard for Software Test Documentation [IEEE829]
This standard defines the content and format of eight documents that cover the entire testing process. The
Test Plan prescribes the scope, approach, resources, and schedule of the testing activities. It identifies the
items to be tested, the testing tasks to be performed, the personnel responsible for each task, and the risks
associated with the Plan. Test specification is covered by three document types (Test-Design Specification,
Test-Case Specification, and Test-Procedure Specification), while test reporting is covered by four document
types (Test-Item Transmittal Report, Test Log, Test-Incident Report, and Test-Summary Report). The
standard shows the relationships of these documents to one another and to the test process they document.

E-2

,

E.2.4 IEEE Guide for Software Requirements Specifications [IEEES30]
This guide describes alternate approaches to good practices in the specification of software requirements.
To enable the reader to make knowledgeable choices, extensive tutorial material is provided. The guide
covers attributes of a good software requirements specification, as well as specification methodologies and
associated formats.

E.2.5 IEEE Standard for Software Verification and Validation Plans [IEEE1012]
This standard has a threefold purpose:

0

0

to provide, for both critical and non critical software, uniform and minimum requirements for the
format and content of Software Verification and Validation Plans (SVVPs);
to define, for critical software, specific minimum Verification and Validation tasks and their
required inputs and outputs that shall be included in SVVPs; and
to suggest optional verification and validation tasks to be used to tailor SVVPs as appropriate for
the particular VEFUFXCATION AND VALIDATION effort.

E.2.6 IEEE Recommended Practice for Software Design Descriptions [IEEE1016]
A software design description is a representation of a software system. It is used as a medium for
communicating software design information. This recommended practice describes that documentation of
software designs. It specifies the necessary information content and the recommended organization for a
software design description.

E.2.7 IEEE Standard for Software Project Management Plans [IEEE1058]
This standard specifies the format and content of software project management plans. It does not specify
the procedures or techniques to be used in the development of project management plans, nor does it
provide examples of project management plans. Instead, the standard sets a foundation for an organization
to build its own set of practices and procedures for developing project management plans.

E.2.8 IEEE Standard for Software User Documentation [IEEE1063]
This standard provides minimum requirements on the structure and information content of user
documentation. It applies primarily to technical substance rather than to style. Users of this standard may
develop their own style manual for use within their organizations to implement the requirements of this
standard.

E.2.9 IEEE Standard for Software Maintenance [IEEE1219]
This standard defines the process for performing the maintenance of software. It prescribes requirements
for process, control and management of planning, execution, and documentation of software maintenance
activities.

E.2.10 IEEE Standard for Software Safety Plans [IEEE1228]
This standard describes the minimum acceptable requirements for the content of a Software Safety Plan. It
applies to the development, procurement, maintenance, and retirement of safety-critical software; for
example, software products whose failure could cause loss of life, serious harm, or have widespread negative
social impact.

E.3
The following paragraphs identify Department of Defense standards, handbooks and documentation
templates for software for reference [MIL498]. A commercial IEEE standard version of this

Department of Defense Software Documentation References

E-3

documentation will be available in the near future: a draft is contained in reference [IEEE1498].
Documents in reference [MIL4981 for which there are no current IEEE equivalent documents include the
following:

0

DoD DID (Data Item Description) DI-PSC-81428 - Software Installation Plan
DoD DID DI-IPSC-81429 - Software Transition Plan
DoD DID DI-IPSC-81431 - System/Subsystem Specification
DoD DID DI-IPSC-81441 - Software Product Specification
DoD DID DI-IPSC-81442 - Version Description Document
DoD DID DI-IPSC-81447 - Computer Programming Manual
DoD DID DI-IPSC-81448 - Firmware Support Manual

Documents in reference [MIL4981 for which some IEEE equivalent documents exist include the following:

DoD DID DI-IPSC-81427 and IEEE STD 1058.1-1987 address documentation of software project
management plans;
DoD DIDs DI-IPSC-81433/81434 and IEEE STD 830-1993 address Software Requirements
Specifications;
DoD DIDs DI-PSC-81435/81436/81437 and BEE STD 1016-1987 address documentation of
software designs; and
DoD DIDs DI-IPSC-81438/81439/81440 and IEEE STD 829-1983 address documentation related
to software test planning, specification (description), and reporting:
DoD DIDs DI-IPSC-81443/81444/81445/81446 and IEEE STD 1063-1987 address software user
documentation.

In addition, the following closely-related DoD documents from reference [DOD2168] and [DOD973] have
IEEE equivalent documents:

DOD DID DI-QCIC-80572 and IEEE STD 730-1989 address Software Quality Assurance Plans;
and
DOD DID DI-CMAN-80858A and IEEE STD 828-1990 address Software Configuration
Management Plans.

0

0

0

0

E.3.1 Department of Defense Software Standards and Handbooks
The following paragraphs briefly describe the Department of Defense standards and guides that identify the
documentation related to software projects. The synopsis provided for each of the listed references is
extracted from their associated Foreword or Purpose paragraphs.

E.3.1.1 MIL Standard 498, Software Development and Documentation [MIL4981
This standard can be applied to contractors, subcontractors, or Government in-house agencies performing
software development. The term "acquirer" is used for the organization requiring the technical effort,
"developer" for the organization performing the technical effort, "contract" for the agreement between those
parties, "Statement of Work for the list of tasks to be performed by the developer, and "subcontractor" for
any organization tasked by the developer to perform part of the required effort. Software Development is
used as an inclusive term encompassing new development, modification, reuse, reengineering, maintenance,
and all other activities resulting in software products. This standard and its Data Item Descriptions (DIDs)
are meant to be tailored for each software project to which they are applied.

E.3.1.2 DoD Standard 2168, Defense System Software Quality Program [DOD21681
This standard contains requirements for the development, documentation, and implementation of a software
quality program. The software quality program includes: planning for and conducting evaluations of the
quality of software, associated documentation, and related activities; and planning for and conducting the
follow-up activities necessary to assure timely and effective resolution of problems. The applicable
documentation is identified within the standard.

E-4

E.3.1.3 MIL Standard 973, Configuration Management [MIL9731
This standard defines the configuration management requirements that are to be selectively applied, as
required, throughout the life cycle of any configuration item. This standard applies to hardware and
software components as well as the system as a whole, and can be applied to contractors, subcontractors, or
Government in-house agencies performing system development or support. The configuration management
system is for the control of all configuration documentation, physical media, and physical parts representing
or comprising the product. For software, the system must address the evolving developmental configuration
and support environments used to generate and test the product. The system configuration management
plan can directly include software configuration management or may reference a separate software
configuration management plan. A general format for a configuration management plan is described in
Appendix A of this standard and various documentation forms for engineering product release, change
proposal, change notice, and waiver are contained in other appendices.

E.3.2 Department of Defense Data Item Descriptions for Software
The Data Item Descriptions identified in the following lists have been grouped together into functional
areas. The presentation order for these groups is project planning, requirements, design, test, description of
final (as-built) products, and product support.

Data Item Descriptions for Software Project Plans
3 Software Development Plan, DI-IPSC-8 1427
3 Software Quality Program Plan, DI-QCIC-80572
3 Software Configuration Management Plan, DI-CMAN-80858A
Data Item Descriptions for System and Software Specification Documents
3 Operational Concept Description, DI-IPSC-8 1430
3 System/Subsystem Specification, DI-IPSC-8 143 1
3 Software Requirements Specification, DI-IPSC-81433
+ Interface Requirements Specification, DI-IPSC-81434
Data Item Descriptions for Software Design Description
3 System/Subsystem Design Description, DI-IPSC-81432
3 Software Design Description, DI-IPSC-8 1435
3 Interface Design Document, DI-IPSC-81436
3 Database Design Document, DI-IPSC-81437
Data Item Descriptions for Software Test Documents
3 Software Test Plan, DI-IPSC-8 1438
* Software Test Description, DI-IPSC-81439
3 Software Test Report, DI-IPSC-8 1440
Data Item Descriptions for Software As-Built Product Documents
3 Software Product Specification, DI-IPSC-8 144 1
3 Software Version Description, DI-IPSC-81442
Data Item Descriptions for Software Support and User Documents

Software Installation Plan, DI-IPSC-81428
3 Software Transition Plan, DI-IPSC-81429
3 Software User Manual, DI-IPSC-81443

Software Center Operator Manual, DI-IPSC-81444
9 Software Input/Output Manual, DI-IPSC-8 1445
e= Computer Operation Manual, DI-IPSC-81446

Computer Programming Manual, DI-IPSC-81447
* Firmware Support Manual, DI-IPSC-81448

Blank Page

Distribution:

P

MS0660
MS 1007
MS0535
MS0535
MS0535
MS0535
MS0977
MS0746
MS0944
MS0944
MS0974
MS0974
MS0977
MS0775
MS0638
MS0638
MS0638
MS0638
MS0627
MS1375
MS066 1

Margaret Olson
Charleene Lennox
Lorraine Baca
Marianna Eisenhour
Laney Kidd
Patty Trellue
Ann Chipman
Eric Tomlin
Nancy Freshour
Paula McAllister
Walt Huebner
Paul Atterrneier
Ann Hodges
Pam Harris
Michael Blackledge
Dwayne Knirk
Gerald McDonald
Dave Peercy, Editor
Fred Trussell
Drayton Boozer
Joe Schofield

(02122)
(02 172)
(026 15)
(02615)
(02615)
(02615)
(05501)
(066 13)
(0790 1)
(07901)
(0942 1)
(09426)
(09432)
(096 17)
(12326) - 5 copies
(12326)
(1 2326)
(12326) - 5 copies
(12334)
(12400)
(13316)

Sandia Software Guidelines Library
MS0809 Betty Straba (1 34 1 1) - 150 copies

Technical Reports Distribution List
MS9018 Central Technical Files (08523-2)
MS0899 Technical Library (13414) - 5 copies
MS0619 Print Media (1 26 15)
MSOlOO Document Processing (07613-2) - 2 copies

For DOE/OSTI

Blank Page

Distribution-2

